UNIVERSITE DE SHERBROOKE

FACULTE DES SCIENCES 1977 - 1978

Pour tout renseignement concernant les PROGRAMMES s'adresser à la Faculté des sciences Université de Sherbrooke Sherbrooke, Québec J1K 2R1

Pour tout renseignement concernant l'INSCRIPTION, s'adresser au Bureau du registraire Université de Sherbrooke Sherbrooke, Québec J1K 2R1

LA CITÉ UNIVERSITAIRE (CAMPUS DE L'OUEST)

١,

TABLE DES MATIERES

CALENDRIER	5.
DIRECTION DE LA FACULTE	7
CORPS PROFESSORAL	8
PROGRAMMES	
BIOLOGIE: ler cycle	14 20 22
CHIMIE: ler cycle	24 29 33
MATHEMATIQUES: ler cycle	35 43 45
PHYSIQUE: ler cycle	47
2e cycle	49
3e cycle	51
ENVIRONNEMENT: 2e cycle	53
DESCRIPTION DES COURS	
BIOLOGIE: cours de ler cycle cours des 2e et 3e cycles	55 65
CHIMIE: cours de ler cycle cours des 2e et 3e cycles	68 73
MATHEMATIQUES: cours du ler cyclecours des 2e et 3e cycles	75 88
PHYSIQUE: cours du ler cycle	90 94

Les renseignements publiés dans ce document étaient à jour en date du ler mars 1977. L'Université se réserve le droit d'apporter des amendements à ses règlements et programmes sans préavis.

	1977						
DLMMJVS	DLMMJVS	DLMMIVS					
JANVIER 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31	FÉVRIER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MARS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					
AVRIL . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	MAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	JUIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30					
JUILLET 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	AOÛT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 18 20 21 22 23 24 25 28 27 28 29 30 31	SEPTEMBRE 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30					
OCTOBRE 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	NOVEMBRE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	DÉCEMBRE 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31					

.

-

	1978					
DLMMJVS	DLMMJVS	DLMMJVS				
JANVIER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	FÉVRIER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	MARS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31				
AVRIL 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30	MAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	JUIN 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 28 27 28 29 30				
JUILLET 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	AOÛT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31	SEPTEMBRE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30				
OCTOBRE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	NOVEMBRE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30	DÉCEMBRE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31				

CALENDRIER UNIVERSITAIRE 1977 - 1978

TRIMESTRE D'AUTOMNE 1977

Début des stages pratiques pour les étudiants du régime Lundi . 22 août

coopératif.

Journée d'accueil et d'information à l'intention des Mardi 6 septembre

nouveaux étudiants.

Début des activités du trimestre d'automne pour les Mercredi 7 septembre

étudiants.

Après-midi réservé aux activités étudiantes. Jeudi 8 septembre

Date limite pour remettre le rapport du stage d'été Vendredi 9 septembre

1977 pour les étudiants du régime coopératif.

Vendredi 23 septembre Date limite de modification des fiches d'inscription.

Action de grâces. Congé universitaire. Lundi 10 octobre

Date limite d'abandon de cours. Mardi ler novembre

> Date limite pour la réception, au Bureau du registraire, des demandes d'admission pour le trimestre d'hiver 1978.

Fin des stages pratiques pour les étudiants du régime Vendredi 16 décembre

coopératif.

Mercredi 21 décembre Fin des activités pour les étudiants inscrits au trimes-(a midi)

tre d'automne 1977.

TRIMESTRE D'HIVER 1978

Mercredi 4 janvier Début des activités du trimestre d'hiver pour les étu-

diants.

Début des stages pratiques pour les étudiants du régime

coopératif.

Date limite pour remettre le rapport du stage d'automne Vendredi 6 janvier

1977, pour les étudiants du régime coopératif.

Vendredi 20 janvier Date limite de modification des fiches d'inscription.

Jeudi 26 janvier Après-midi réservé aux activités étudiantes.

Mercredi ler mars Date limite d'abandon de cours.

Date limite pour la réception, au Bureau du registraire,

des demandes d'admission pour le trimestre d'automne

1978.

Jeudi 23 mars Début du congé de Pâques, en soirée.

Mardi 28 mars Reprise des activités.

Vendredi 14 avril Fin des stages pratiques pour les étudiants du régime

coopératif.

Vendredi 21 avril Fin des activités pour les étudiants inscrits au trimes-

(à midi) tre d'hiver 1978.

TRIMESTRE D'ETE 1978

Début des activités du trimestre d'été pour les étudiants Lundi 24 avril

du régime coopératif.

Début des stages pratiques pour les étudiants du régime

coopératif.

Vendredi 28 avril

Date limite pour remettre le rapport du stage d'hiver 1978, pour les étudiants du régime coopératif.

Lundi ler mai

Début des activités du trimestre d'été pour les étudiants inscrits à des programmes de type non-coopératif.

Vendredi 19 mai

Date limite de modification des fiches d'inscription.

Lundi 22 mai

Jour férié. Congé universitaire.

Vendredi 23 juin Lundi 26 juin

Congé universitaire (date à préciser).

Samedi 24 juin

Fête du Canada français.

Vendredi 30 juin Lundi 3 juillet Congé universitaire (date à préciser). Date limite d'abandon de cours. (Selon la date du congé universitaire).

Samedi ler juillet

Fête du Canada.

Vendredi 4 août

Fin des activités du trimestre d'été 1978 pour les étudiants du régime coopératif.

Vendredi 11 août

Fin des activités du trimestre d'été 1978 pour les étudiants inscrits à des programmes de type non-coopératifs.

Vendredi 18 août

Fin des stages pratiques pour les étudiants du régime coopératif.

Lundi 21 août

Début des stages pratiques d'automne 1978, pour les étudiants du régime coopératif.

DIRECTION DE LA FACULTE

COMITE EXECUTIF

Doyen: Louis C. O'NEIL

Vice-doyen: Normand LAROCHELLE Secrétaire: Jean-Pierre SAMSON Conseillers: Jean-Marie CLICHE Jacques DESNOYERS

Rolland GAUDET Jacques JUILLET Albert LEGAULT André LEMIEUX

CONSEIL

Louis C. O'NEIL, président

Normand BEAULIEU Alain CAILLE Bernard COURTEAU Gérard CROTEAU Jacques DESNOYERS Raymond DESROCHERS Denis DUFRESNE Rolland GAUDET Jacques JUILLET Richard LAPALME

Normand LAROCHELLE André LEMIEUX Jean LESSARD Joseph NAAMAN Jean-Pierre SAMSON

COMITES PERMANENTS

Comité des études supérieures

Normand LAROCHELLE, président

Adrien BEAUDOIN Alain CAILLE

Jacques DUBOIS John K. SAUNDERS

Comité d'admission et des équivalences

Jean-Pierre SAMSON, président

Maurice BRISEBOIS

Jean LEFAIVRE Albert LEGAULT Roger ST-ARNAUD

SECRETAIRE ADMINISTRATIF

Jean-Paul FORTIER

CORPS PROFESSORAL

DEPARTEMENT DE BIOLOGIE

```
Directeur et professeur titulaire
```

JUILLET Jacques, B.Sc.A. (génie forestier) (Laval), M.Sc., Ph.D. (Ent. For.) (S.U.N.Y. Coll. of For. at Syracuse U.)

Directeur adjoint et professeur agrégé

LEGAULT Albert, B.A., B.Péd., B.Sc., M.Sc. (biologie) (Montréal) M.Sc. (botanique) (Yale)

Professeurs titulaires

DESROCHERS Raymond, L.Sc., M.Sc., Ph.D. (bactériologie) (Montréal)
DUNNIGAN Jacques, B.A. (Montréal), B.Sc., Ph.D. (biologie) (Ottawa)
O'NEIL Louis-C., B.A. (Montréal), B.Sc.A. (génie forestier) (Laval), M.Sc., Ph.D.
(Ent. For.) (S.U.N.Y. Coll. of For. at Syracuse U.)
SAUCIER Robert, B.Sc. (T.M.), B.Sc., M.Sc., Ph.D. (biochimie) (Montréal)

Professeurs agrégés

BECHARD Pierre, B.Sc., M.Sc. (Bactériologie) (Sherbrooke), Ph.D. (bactériologie) (McGill)
LORD André, B.Péd. (Montréal), B.Sc., D.Sc. (biologie) (Laval)
MATTON Pierre, B.A., L.Ph. (Montréal), M.Sc. (biologie) (Fordham), Ph.D. (physiologie) (Ottawa)
MORISSET Jean, B.A., B.Sc., Ph.D. (physiologie) (Sherbrooke)
SHARMA Madan Lal, B.Sc., M.Sc. (zoologie) (Punjab), D.Sc. (entomologie) (Paris)
VERONNEAU (Abbé) Gilles, B.A., L.Sc.Nat. (Montréal), M.Sc. (entomologie) (Sherbrooke)

Professeurs adjoints

BEAUDOIN Adrien, B.Sc. (Sherbrooke), D.Sc. (biochimie) (Laval)
BEAUMONT Gaston, B.Sc.A. (Laval), M.Sc., D.Sc. (phytologie) (Laval)
BERGERON Jean-Marie, B.Sc. (Sherbrooke), Ph.D. (zoologie) (Manitoba)
BRILLON Gilles, B.Sc., M.Sc. (entomologie) (Sherbrooke)
GRENIER Gilles, B.Sc., M.Sc., D.Sc. (phytologie) (Laval)
GRIECO Emile, B.Sc., M.Sc. (microbiologie) (Montréal)
POIRIER Guy, B.Sc. (biochimie), D.Sc. (physiologie) (Laval)
ROBIN Jean, B.A., B.Péd., B.Sc., M.Sc. (microbiologie), Ph.D. (virologie) (Sherbrooke)
VILLEMAIRE Alfred, B.A. (Loyola), B.Sc. (Sherbrooke), D.Sc. (physiologie) (Laval)

Directeur de l'animalerie

 ${\it Coordonnateur de laboratoire}$

LAVIOLETTE Roger

DEPARTEMENT DE CHIMIE

```
Directeur et professeur titulaire
DESNOYERS Jacques E., B.Sc., Ph.D. (chimie) (Ottawa)
Directeur adjoint et professeur agrégé
CLICHE Jean-Marie, B.A., B.Sc. (chimie), M.Sc. (biochimie) (Montréal)
Professeurs titulaires
BROWN Gordon M., B.Sc., M.Sc (Western Ontario), D.Sc. (chimie) (Laval), D. d'U.
   (Montpellier) (en congé sabbatique)
CABANA Aldée, B.Sc., M.Sc., Ph.D. (chimie) (Montréal)
DESLONGCHAMPS Pierre, B.Sc., M.Sc., Ph.D. (chimie) (Nouveau-Brunswick)
LALANCETTE Jean-Marc, B.Sc., M.Sc., Ph.D. (chimie) (Montréal)
PELLETIER Gérard E., B.A., B.Sc., M.Sc. (Ottawa), D.Sc. (chimie) (Laval)
Professeurs agrégés
BANDRAUX A.D., B.Sc. (Loyola), S.M. (M.I.T.), Ph.D. (chem.-phys) (McMaster)
   (en congé sabbatique)
JERUMANIS Stanislas, L.Sc., D.Sc. (chimie) (Louvain)
JOLICOEUR Carmel, B.Sc., Ph.D. (chimie) (Sherbrooke)
KIMMERLE Frank, B.Sc., M.A., Ph.D. (chimie) (Toronto)
LESSARD Jean, B.A., B.Sc., D.Sc. (chimie) (Laval)
ST-ARNAUD Roger, B.A., B.Péd. (Sherbrooke), L.Sc. (chimie) (Montréal)
SAUNDERS John K., B.Sc. (chimie) (Melbourne, Australie), Ph.D. (chimie) (McMaster)
Professeurs adjoints
EON Claude, Ing., D.Ing., D.Sc. (Paris)
GIGUERE Jacques, B.Sc. (chimie) (Sherbrooke), Ph.D. (chimie) (Minnesota)
SOMCYNSKY Thomas, B.Sc., M.Sc., Ph.D. (chimie) (Montréal)
TAILLEFER Roland, B.Sc. (Ottawa), Ph.D. (chimie) (McMaster)
Adjoints de recherche
PICKER Patrick
RUEST Luc, B.A., B.Sc., D.Sc., (chimie) (Laval)
Attaché de recherche C.N.R.C.
MENARD Hugues, B.Sc., Ph.D. (chimie) (Sherbrooke)
Coordonnateur de laboratoire
MONGRAIN Marcel
DEPARTEMENT DE MATHEMATIQUES
Directeur et professeur adjoint
GAUDET Rolland, B.A. (Manitoba), M.A. (Saskatchewan), Ph.D. (mathématiques) (Alberta)
Professeurs titulaires
BAZINET Jacques, B.A., B.Péd., B.Sc., M.Sc. (mathématiques) (Montréal). Ph.D. (Waterloo)
BOUCHER Claude, B.A., B.Sc., M.Sc., Ph.D. (mathématiques) (Montréal)
CONSTANTIN Julien, B.A., B.Sc., M.Sc. (mathématiques) (Montréal)
Professeurs agrégés
ALLARD Jacques, B.Sc. (mathématiques), (physique-mathématiques), CAPES (Sherbrooke),
   M.Sc. (mathématiques) (Laval)
BRISEBOIS Maurice, B.A., B.Sc., M.Sc. (mathématiques) (Montréal)
```

CUSTEAU Guy, ing., B.Sc.A. (Sherbrooke), M.Math., Ph.D. (mathématiques) (Waterloo)

COLIN Bernard, L.Sc., D.E.A., D. 3e cycle (mathématiques-statistique) (Paris)

COURTEAU Bernard, B.A., B.Sc., M.Sc. (mathématiques) (Montréal)

DUBOIS Jacques, B.Sc., M.Sc., Ph.D. (mathématiques) (Montréal) GIROUX Gaston, B.Sc., M.Sc., Ph.D. (mathématiques) (Montréal)

```
HAGUEL Jacques, L.Sc., D.E.A., D. 3e cycle (mathématiques appliquées) (Paris)
 KONGUETSOF Léonidas, L. Math., D.Sc. (mathématiques) (Paris)
 LEDUC Pierre-Yves, B.Sc., M.Sc., Ph.D. (mathématiques) (Montréal)
 LUNKENBEIN Dieter, Dipl.Sc. (mathématiques) (Freiburg), D.Sc.Ed. (enseignement) (Laval)
PROVENCHER Benoît, B.A., B.Sc., M.Sc. (mathématiques) (Montréal) SAMSON Jean-Pierre, B.A., B.Sc., M.Sc. (mathématiques) (Montréal)
THERIEN LOTC, B.A., B.Sc., M.Sc. (mathématiques) (Montréal)
Professeurs adjoints
ALLARD Huguette, B.A. (Sherbrooke), B.Sc. (Montréal), M.Sc.Ed. (pédagogie) (Laval)
BELLEY Jean-Marc, B.Sc., M.Sc., Ph.D. (McGill)
BOULANGER Alain, B.A., B.Sc., M.Sc. (mathématiques) (Sherbrooke)
DION Jean-Guy, B.Sc., M.Sc. (mathématiques) (Sherbrooke), D.E.A., D. 3e cycle
    (mathématiques appliquées) (Grenoble)
DO BA Manh, Ing., M.Sc.A. (Polytechnique), M.Sc. (Stanford)
FORTIER Marielle, B.A., B.Sc., M.Sc. (psychomathématique) (Sherbrooke)
FOURNIER Gilles, B.Sc., M.Sc., Ph.D. (mathématiques) (Montréal)
GOUPILLE Cécile, B.Péd., B.A. (Sherbrooke), L.Péd. (Montréal), M.Sc.Ed. (pédagogie)
    (Laval)
HOUDEVILLE Gérard, D.E.A. (informatique) (Grenoble)
Attaché de recherche C.N.R.C.
FOURNIER Reine, B.A., B.Sc., M.Sc., Ph.D., (mathématiques) (Montréal)
DEPARTEMENT DE PHYSIQUE
Directeur et professeur adjoint
LEMIEUX André, B.Sc., M.Sc. (physique) (Montréal)
Professeur titulaire
LAROCHELLE Normand, B.A., B.Sc. (physique) (Montréal), M.A. (Météo) (Toronto),
  · Ph.D. (physique) (Montréal)
Professeurs agrégés
AUBIN Marcel, B.Sc., Ph.D. (physique) (Ottawa)
BANVILLE Marcel, B.Sc. (Montréal), M.Sc., Ph.D. (physique) (U.B.C.)
CARON Laurent-G., B.Sc.A. (poly), M.Sc.A., Ph.D. (physique) (M.I.T.) (en congé sabba-
    tique)
CHEEKE David, B.Sc.A., M.Sc.A. (U.B.C.), Ph.D. (physique) (Nottingham)
KRELL Max, Dipl. Phys. (Nurnberg) Ph.D., (physique) (Frankfurt)
LEFAIVRE Jean, B.A., B.Sc.A., M.Sc. (physique) (Laval) SIMARD Paul-A., B.Sc., D.Sc. (physique) (Laval)
Professeurs adjoints
CAILLE Alain, B.Sc., M.Sc., Ph.D. (physique) (McGill)
CARLONE Cosmo, B.Sc. (Windsor), M.Sc., Ph.D. (physique) (U.B.C.)
GUTMANN Francis, B.Sc., M.Sc., Ph.D. (physique) (U.B.C.)
Chargé d'enseignement
JANDL Serge, Maîtrise (Grenoble), M.Sc., Ph.D. (physique) (Montréal), D.Sc. (physique)
 (Grenoble)
Professeur affilié
PERLMAN Martin-M., B.Sc., M.Sc., Ph.D. (physique) (McGill)
```

PROGRAMME

REMARQUES PRELIMINAIRES

La Faculté des sciences, de façon intégrale, offre à l'étudiant des programmes de baccalauréat du ler cycle universitaire dans chacun des départements qu'elle regroupe et qui sont vouées à l'enseignement et à la recherche dans l'un des domaines suivants: la biologie, la chimie, les mathématiques et la physique.

En collaboration avec la Faculté des arts, elle offre également un programme de baccalauréat avec majeur en mathématiques et mineur en économique.

De plus, dans le domaine de la formation des enseignants, la Faculté des sciences contribue à un programme de baccalauréat avec majeur en sciences et mineur en pédagogie et à un programme de baccalauréat en enseignement élémentaire. Le programme de baccalauréat avec majeur en biologie, chimie, mathématiques ou physique est offert conjointement avec la Faculté des sciences de l'éducation. Cette faculté et la Faculté des arts coopèrent également à un programme de baccalauréat en enseignement élémentaire dans le cadre duquel la Faculté des sciences offre des blocs de cours de mathématiques et de sciences naturelles. Ces programmes de formation des enseignants sont coordonnés par la Direction générale de la formation des maîtres et ils sont décrits dans l'annuaire de cet organisme.

Enfin, la Faculté des sciences accepte des candidats aux études supérieures (programmes de maîtrise et doctorat) dans chacune des disciplines suivantes: la biologie, la chimie, les mathématiques et la physique.

Les programmes de baccalauréat sont basés sur une scolarité normale de 3 ans (6 sessions) à temps plein; les programmes de maîtrise exigent au moins une année de scolarité, et les programmes de doctorat, au moins 2 années, à temps plein exclusivement.

MAITRISE EN ENVIRONNEMENT

La Faculté des sciences participe conjointement avec la Faculté des sciences appliquées pour offrir un programme de maîtrise en environnement. Ce programme tout en étant à la portée de tous les diplômés de ler cycle en sciences, est néanmoins plus particulièrement conçu pour ceux qui se sont spécialisés en biologie et en chimie.

SYSTEME COOPERATIF

La Faculté des sciences offre, parallèlement, pour les Départements de mathématiques (mathématiques appliquées), de physique et de chimie, un programme régulier, c'est-à-dire traditionnel, et un programme coopératif.

Elle offre également pour le Département de mathématiques (informatique et informatique-administration) un programme coopératif sans régime régulier en parallèle.

Le programme des études dans une formule coopérative comporte le même nombre de sessions d'études que dans une formule conventionnelle. L'expérience pratique que l'étudiant acquiert durant les stages s'ajoute aux connaissances théoriques qu'il reçoit à l'Université. Le stage n'est pas un substitut, mais un complément important à la formation reçue en Faculté.

Selon la régime coopératif, le programme de baccalauréat couvre une période de 3 ans et 4 mois, totalisant 6 sessions d'études et 4 stages pratiques. L'étudiant doit compléter avec succès 3 stages pratiques en ce sens que l'échec d'un stage n'entraînes pas l'exclusion du système coopératif. Si cependant, c'est le dernier stage qui est échoué, ce stage doit être repris intégralement, conformément aux règlements pédagogiques de l'Université de Sherbrooke.

Exceptionnellement, au début de la 3e session académique, il sera permis à un nombre limité d'étudiants qui avaient choisi le régime traditionnel ou qui ont été admis à ce niveau, de se joindre au système coopératif. Ils devront alors compléter avec succès les 3 derniers stages car l'échec d'un stage entraîne pour eux l'exclusion du système coopératif.

SYSTEME COOPERATIF -- AGENCEMENT DES SESSIONS

I- Mathématiques appliquées, mathématiques-informatique, informatique de gestion et physique.

1977		1978			1979			1980	
AUT.	HIV.	ÉTÉ	AUT.	HIV.	ÉTÉ	AUT.	HIV.	ÉTÉ	AUT.
S-6									
T-3	S-5	T-4	S-6						
S-3	T _: 2	S-4	T 3	S-5	T-4	S-6			
S-1	S-2	T ⋅ 1	S-3	T .2	S-4	T-3	S-5	T · 4	S-6

II- Chimie (ler cycle)

1977		1978			1979			1980	
AUT.	HIV.	ÉTÉ	AUT.	HIV.	ÉTÉ	AUT.	HIV.	ÉTÉ	AUT.
S-6			_						
T-2	S-5	Т 3	S-6						
S-3	T-1	S-4	T 2	S-5	Т 3	S-6			
S-1	S-2		S-3	T-1	S-4	T 2	S-5	T-3	S-6

III- Chimie (2e cycle)

L'agencement des sessions d'études (S), de la session intensive (SI) et des stages de travail (T) varie selon le nombre de crédits choisis par session.

- Si l'étudiant choisit 15 crédits par session, son programme comporte normalement 2 trimestres d'études et l'agencement est tel qu'illustré ci-dessous. (Sous ce régime, l'étudiant est normalement admis au trimestre d'hiver).

- Si l'étudiant choisit 10 crédits par session, ou que son programme d'études comporte des cours de qualification en plus des 30 crédits prescrits, 3 trimestres d'études sont alors indiqués et l'agencement est tel qu'illustré cidessous. (Sous ce régime, l'étudiant est normalement admis au trimestre d'été et la session intensive d'évaluation et de synthèse est alors incluse dans la session S-3).

S: Session d'étude - BLANCT: Stage pratique - NOIR

AUT: Automne (septembre-décembre)

HIV: Hiver (janvier-avril)

ETE: (mai-août)

Il est à remarquer, d'après ces tableaux, que les étudiants qui font leur lre session au trimestre d'hiver, doivent nécessairement s'inscrire au régime traditionnel, car l'alternance des sessions d'études et des stages pratiques, inhérente au régime co-opératif, n'est possible qu'à partir du trimestre d'automne.

Il faut souligner que le système coopératif se termine toujours par une session d'études et non par un stage.

Finalement, la Faculté des sciences ne permet pas aux étudiants en stage de s'inscrire à des activités pédagogiques en vue de l'obtention de crédits.

BIOLOGIE

A) Programme de ler cycle (90 credits minimum)

Cours communs et obligatoires (56 crédits) pour toutes les concentrations.

TRIMESTRE	D'AUTOMNE	TRIMESTRE D'HIVER
BIO 1503	Invertébrés I	BIO 1151 Biométrie I
BIO 1604	Vertébrés I	BIO 1403 Botanique
BIO 1612	Vertébrés I (TP)	BIO 1411 Botanique (TP)
BIO 1703	Physio. animale I	BIO 1511 Invertébrés (TP)
BIO 2123	Microbiologie	BIO 1522 Invertébrés II
BIO 2131	Microbiologie (TP)	BIO 1723 Physio, animale II
BIO 2151	Biométrie II	BIO 1802 Biochimie I
BIO 2802	Biochimie II	BIO 2142 Ecologie thématique
BIO 2812	Biochimie I (TP)	BIO 2703 Physiologie cellulaire
BIO 3143	Génétique	BIO 3001-41 Séminaires
BIO 3151	Génétique (TP)	CHM 1443 Chimie organique II
BIO 3763	Physiologie végétale I	CHM 1451 Chimie organique (TP)
BIO 3772	Physiologie végétale (TP)	MAT 1691 Probabilités
CHM 1432	Chimie organique I	

En plus des cours du bloc commun, l'étudiant à temps complet doit prendre un minimum de 34 crédits parmi tous les cours offerts dans les programmes du Département. Les travaux pratiques rattachés aux cours théoriques sont obligatoirement suivis en même temps que ces cours théoriques.

Les cours d'une concentration ne seront donnés que s'ils groupent un nombre suffisant de candidats pour cette concentration.

Le Département se réserve le droit, pour des raisons jugées valables, d'établir, pour certains cours une alternance à tous les 2 ans.

1. BACCALAUREAT - option biologie

En plus des cours du bloc commun, l'étudiant doit suivre un minimum de 34 crédits parmi tous les cours offerts dans les concentrations du Département.

BACCALAUREAT - option biologie (entomologie)

En plus des cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

TRIMESTRE	D' AUTOMNE	TRIMESTRE	D'HIVER
BIO 2161	Ecologie (TP)	BIO 2162	Ecologie
BIO 2562	Entomologie I	BIO 2542	Arthropodes
BIO 2571	Entomologie I (TP)	BIO 2551	Arthropodes (TP)
	Entomologie II	BIO 3542	Pathologie des insectes
	Entomologie II (TP)	BIO 3591	Taxonomie des insectes
		BIO 3593	Initiation à la recherche
			entomologique
		BIO 3782	Physiologie des insectes

et compléter son programme en choisissant un minimum de 13 crédits parmi tous les cours offerts dans les autres concentrations du Département.

BACCALAUREAT - option biologie (microbiologie)

TOTMESTDE DIAIPPOUNE

En plus de tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

INIMESTRE D. MOTOMME	IKIPESIKE	O III VER
BIO 2322 Phycologie	B10 2342	Mycologie
BIO 2331 Phycologie (TP)	BIO 2351	Mycologie (TP)
BIO 2842 Biochimie III	BIO 2502	Protozoologie
BIO 3163 Grands groupes bacté	riens BIO 2511	Protozoologie (TP)
BIO 3172 Systématique microbi	enne (TP) BIO 2852	Biochimie II (TP)
·	BIO 3122	Immunologie
	BIO 3131	Immunologie (TP)
	BIO 3182	Virologie
	BIO -3191	Virologie (TP)
	BIO 3742	Physiologie microbienne
	BIO 3752	Physiologie microbienne (TP)
	CHM 2262	Techniques d'analyse
		chimique

TRIMESTRE D'HIVER

et compléter son programme en choississant un minimum de 4 crédits parmi les cours suivants incluant obligatoirement les travaux pratiques (TP) attachés aux cours théoriques:

BIO 2071 BIO 2161 BIO 3822 BIO 3911 CHM 2733	Histologie Histologie (TP) Ecologie (TP) Endocrinologie I Techniques chirurgicales Chimie physique I Informatique	BIO 3542 BIO 3602 BIO 3622 BIO 3631 BIO 3702 BIO 3792 BIO 3873 CHM 2743	Ecologie Pathologie des insectes Evolution des vétébrés Ichtyologie Ichtyologie (TP) Physiologie animale III Physiologie animale (TP) Physiologie végétale II Techniques biochimiques Chimie physique II
		CHM 2852	Chimie physique (TP)
	*	MAT 2692	Statistiques

BACCALAUREAT - option biologie (physiologie-biochimie)

En plus de tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

TRIMESTRE D'AUTOMNE	TRIMESTRE D'HIVER
BIO 2062 Histologie BIO 2071 Histologie (TP) BIO 2842 Biochimie III BIO 3822 Endocrinologie I CHM 2733 Chimie physique I	BIO 2852 Biochimie II (TP) BIO 3712 Physiologie animale (TP) BIO 3873 Techniques biochimiques CHM 2743 Chimie physique II CHM 2852 Chimie physique (TP)

et compléter son programme en choississant un minimum de 12 crédits parmi les cours suivants, incluant obligatoirement les travaux pratiques (TP) attachés aux cours théoriques:

BIO 37	701	Initiation à la recherche	BIO	3122	Immunologie
		physiologique I	BIO	3131	Immunologie (TP)
BIO 37	711	Initiation à la recherche	BIO	3182	Virologie
		physiologique II	BIO	3191	Virologie (TP) .
BIO 37	722	Biochimie de la nutrition	BIO	3702	Physiologie animale III
BIO 39	911	Techniques chirurgicales	BIO	3732	Initiation à la recherche
MAT 10	082	Informatique			physiologique III
			BIO	3792	Physiologie végétale II
			BIO	3802	Biochimie clinique
					Biochimie clinique (TP)
		•	CFIM	2262	Techniques d'analyse
					chimique
			MAT	2692	Statistiques

CHM 3623 Chimie des protéines

5. BACCALAUREAT - option biologie (zoologie - botanique)

En plus de tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

TRIMESTRE D'AUTOMNE	TRIMESTRE D'HIVER
BIO 2161 Ecologie (TP)	BIO 2162 Ecologie BIO 2342 Mycologie
BIO 2322 Phycologie BIO 2331 Phycologie (TP)	BIO 2351 Mycologie (TP)
BIO 2562 Entomologie I	BIO 3222 Aménagement de la faune
BIO 2571 Entomologie I (TP) BIO 3401 Taxonomie des plantes	BIO 3231 Aménagement de la faune (TP)
vasculaires I	BIO 3622 Ichtyologie
BIO 3412 Taxonomie des plantes vasculaires I (TP)	BIO 3631 Ichtyologie (TP)

et compléter son programme en choississant un minimum de 13 crédits parmi les cours suivants incluant obligatoirement les travaux pratiques (TP) attachés aux cours théoriques:

BIO 3163	Grands groupes bactériens	BIO 2182	Biogéographie végétale
BIO 3172	Systématique microbienne	BIO 2191	Biogéographie végétale
	(TP)		(TP)
BIO 3202	Ecologie des mammifères	BIO 2502	Protozoologie
BIO 3211	Ecologie des mammifères	BIO 2511	Protozoologie (TP)
	(TP)	BIO 2542	Arthropodes
BIO 3242	Initiation à la recherche	BIO 2551	Arthropodes (TP)
	écologique I	BIO 3252	Initiation à la recherche
BIO 3563			écologique II
BIO 3571	Entomologie II (TP)	BIO 3421	Taxonomie des plantes
	Informatique		vasculaires II
BIO 2062		BIO 3431	Taxonomie des plantes
BIO 2071	Histologie (TP)		vasculaires II (TP)
		BIO 3591	Taxonomie des insectes
		BIO 3602	Evolution des vertébrés
		BIO 3613	Vertébrés II
		BIO 3702	Physiologie animale III
		BIO 3792	Physiologie végétale II
		MAT 2692	Statistiques

GEO 1223 Eléments de climatologie GEO 2233 Télédétection I GEO 2333 Télédétection II GEO 3153 Aménagement régional GEO 3623 Climatologie II

6. BACCALAUREAT - option biologie - pédagogie

Cours obligatoires (55 crédits)

TRIMESTRE	D'AUTOMNE	TRIMESTRE	D'HIVER
BIO 1503	Invertébrés I	BIO 1151	Biométrie I
BIO 1604	Vertébrés I	BIO 1403	Botanique
BIO 1612	Vertébrés I (TP)	BIO 1411	Botanique (TP)
BIO 1703	Physiologie animale I	BIO 1511	Invertébrés (TP)
BIO 2142	Ecologie thématique	BIO 1522	Invertébrés II
	Ecologie (TP)	BIO 1723	Physiologie animale II
BIO 2802	Biochimie II	BIO 1802	Biochimie I
BIO 2812	Biochimie I (TP)	BIO 2162	Ecologie
BIO 3003	Didactique I de la Biologie	BIO 3013	Didactique II de la Biologie
	Génétique	CHM 1443	Chimie organique II
BIO 3151	Génétique (TP)	CHM 1451	Chimie organique (TP)
BIO 3763	Physiologie végétale I		
BIO 3772	Physiologie végétale (TP)		
	Chimie organique I		

Cours à option (3 crédits)

BIO 2062 Histologie ou BIO 2703 Physiologie cellulaire BIO 2071 Histologie (TP)

Cours au choix (1 crédit)

BIO 2542 Arthropodes BIO 2123 Microbiologie Arthropodes (TP) BIO 2551 BIO 2131 Microbiologie (TP) BIO 3613 Vertébrés II BIO 2151 Biométrie II MAT 1691 Probabilités BIO 2562 Entomologie I BIO 2571 Entomologie I (TP) Taxonomie des plantes BIO 3401

BIO 3401 Taxonomie des plantes vasculaire I BIO 3412 Taxonomie des plantes vasculaire I (TP)

- 7. En outre du programme de Baccalauréat, option biologie, figurent aussi, dans une option biologie-pédagogie, les programmes suivants:
- a) Baccalauréat en enseignement élémentaire (mineur sciences à l'élémentaire).
- b) Baccalauréat en enfance inadaptée, élémentaire.

Les cours suivants, dont la teneur est essentiellement didactique, constituent la série des cours obligatoires que doivent suivre au Département de biologie les étudiants de la Formation des Maîtres, engagés dans l'un ou l'autre des programmes cités plus haut. Pour plus de détails voir l'annuaire de la Formation des Maîtres.

Baccalauréat en enseignement élémentaire (mineur sciences à l'élémentaire)

SCI 0203 Organisation d'un SCI 0103 Développement de l'esprit scientifique SCI 0303 Etudes des démarches intellectuelles et scientifiques

Baccalauréat en enfance inadaptée (mineur sciences à l'élémentaire)

SCI 0103 Développement de l'esprit scientifique

8. Le Département de biològie collabore également à un programme offert par le Département de philosophie de la Faculté des arts. Les étudiants inscrits à ce programme devront suivre un minimum de 30 crédits parmi les cours de la liste suivante:

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

BIO 1703	Physiologie animale I	BIO 1723	Physiologie animale II
BIO 2123	Microbiologie	BIO 1802	Biochimie I
BIO 2131	Microbiologie (TP)	BIO 2142	Ecologie thématique
BIO 2161	Ecologie (TP)	BIO 2162	Ecologie
BIO 2802	Biochimie II	BIO 2182	Biogéographie végétale
BIO 2812	Biochimie (TP)	BIO 2191	Biogéographie yégétale
BIO 3103	Biologie du milieu I		(TP)
	Génétique	BIO 3123	Biologie du milieu II
BIO 3151	Génétique (TP)	BIO 3602	Evolution des vertébrés
CHM 1432	Chimie organique I		

9. Le Département de biologie collabore de plus avec le Département de géographie de la Faculté des arts dans le cadre de son programme de majeur en géographie physique et mineur en sciences en offrant les cours suivants:

TRIMESTRE D'AUTOMNE

B10 1604	vertebres 1
BIO 1612	Vertébrés I (TP)
BIO 2151	Biométrie II
BIO 2161	Ecologie (TP)
BIO 3202	Ecologie des mammifères
BIO 3211	Ecologie des mammifères (TP)
BIO 3401	Taxonomie des plantes vasculaires I
BIO 3412	Taxonomie des plantes
	vasculaires I (TP)

TRIMESTRE D'HIVER

	•
BIO 1151	Biométrie I
BIO 1403	Botanique
BIO 1411	Botanique (TP)
BIO 2162	Ecologie
BIO 2182	Biogéographie végétale
BIO 2191	Biogéographie végétale (TP)
BIO 3222	Aménagement de la faune
BIO 3231	Aménagement de la faune (TP)

BIOLOGIE

PROGRAMMES DES 2E ET 3E CYCLES

Les étudiants qui désirent s'inscrire aux études supétieures en biologie devraient normalement considérer l'intégration de leurs travaux de recherche dans le cadre des projets suivants, actuellement en cours au Département.

1. ETUDES FLORISTIQUES DANS LES CANTONS DE L'EST

La région des Cantons de l'Est se présente en un plateau surélevé, coupé de crêtes et de vallées parallèles, prolongement en notre pays des montagnes Blanches et des montagnes Vertes du système apalachien. C'est le domaine de la forêt décidue boréale.

La flore de cette région est encore très peu connue. Les botanistes du Département sont à faire l'inventaire floristique des Cantons de l'Est, attachant une attention particulière aux dépôts de serpentine ainsi qu'à la flore riparienne des différents lacs de la région.

2. ECOLOGIE MICROBIENNE

La flore microbienne, intimement associée au milieu, ne peut être étudiée qu'en tenant compte des conditions du milieu. Les travaux de cetté section portent surtout sur la flore microbienne des eaux des lacs en voie d'eutrophisation. De plus des études portent également sur les relations entre micro et macro-organismes du milieu aquatique et cherchent à relier l'importance de la pollution à la fréquence des infections pathogènes chez les poissons.

3. ECOLOGIE DES INSECTES ET AMENAGEMENT DES VERTEBRES

Ces études portent sur l'influence des engrais minéraux dans la dynamique des populations d'insectes ainsi que sur l'importance des insectes dans la diète des Vertébrés supérieurs fréquentant les agrosystèmes. L'étude porte de plus sur l'aménagement des principales espèces de Vertébrés fréquentant cet écosystème particulier afin d'avoir une meilleure idée de leur impact économique. Nous nous intéressons particulièrement aux propriétés de population comme les mouvements, la diète et la dynamique qui sont toutes importantes dans la recherche de moyens pour contrôler leurs dégâts.

4. PHYSIOLOGIE GASTRO-INTESTINALE

Ces études s'intéressent particulièrement aux détails des mécanismes de la réponse stomacale ainsi qu'aux mécanismes stimulateurs endocriniens, nerveux et alimentaires. Les travaux portant aussi sur les mécanismes de la réponse du pancréas exocrine (biosynthèse enzymatique et sécrétion) ainsi qu'aux sécrétagogues et à leurs relations avec la système nerveux. Il se pratique de routine différents tests d'activité enzymatique, des techniques de chirurgie gastro-intestinale, d'évaluation de biosynthèse protéique à partir de précurseurs marqués ainsi que de tests de stimulation et d'inhibition pharmacologiques.

5. CONTROLE HORMONAL DES FONCTIONS DE LA REPRODUCTION

Les études poursuivies dans ce laboratoire portent sur divers aspects de l'endocrinologie et de la physiologie de la reproduction, tels la maturation des follicules, l'ovulation, la fécondation, la descente des ovules dans les trompes, la mobilité des spermatozofides, l'implantation de l'ovule, la gestation et la mise-bas. Les études portent également sur les modes d'action et les effets à long terme des contraceptifs oraux, sur l'ovulation induite par des composés chimiques et non chimiques, ainsi que sur la mode d'action de la thalidomide.

B) PROGRAMME DE 2E CYCLE

TITRE: Maîtrise en biologie

GRADE: Maître ès sciences SIGLE: M.Sc. DUREE MINIMALE: 3 trimestres CREDITS: 45

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études de 2e cycle universitaire;
- b) avoir obtenu un baccalauréat spécialisé en biologie d'une université reconnue, ou tout autre diplôme jugé équivalent;
- c) s'être classé dans la lre moitié de sa classe avec une moyenne cumulative d'au moins 2.20, dans un système où la moyenne cumulative maximale est 4.00, ou avoir obtenu des résultats académiques jugés équivalents (par exemple 70%);
- s'assurer, auprès du directeur du Département de biologie, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de biologie serait prêt à accepter de diriger ses travaux de recherche.

Faculté des sciences, Département de biologie,

OBJECTIFS DU PROGRAMME

Ce programme avec accent sur la recherche permet à l'étudiant d'approfondir ses connaissances en biologie, de commencer à se spécialiser dans un secteur de cette science et de s'initier à la recherche.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte 3 types d'activités qu'on peut regrouper sous les titres suivants: cours, recherche, mémoire.

Cours (6 crédits au minimum)*

Cours obligatoire (1 crédit)

BIO 5001	Séminaires de recherche I	1 crédit
Cours au	choix (5 crédits)**	
BIO 5031	Nomenclature botanique	l crédit
BIO 5062	Différenciation cellulaire	2 crédits
BIO 5143	Biologie du milieu III	3 crédits
BIO 5162	Ecologie des insectes	2 crédits
BIO 5182	Ecologie microbienne	2 crédits
BIO 5202	Ecologie des vertébrés	2 crédits
BIO 5411	Les Ptéridophytes	l crédit

- En plus de s'inscrire au séminaire obligatoire BIO 5001 et à 5 crédits de cours, l'étudiant doit s'inscrire annuellement à un séminaire de recherche (BIO 5041, BIO 5051, BIO 5061) aussi longtemps qu'il n'a pas été autorisé à rédiger son mémoire.
- ** Cette liste de cours au choix est donnée à titre de suggestion et ne constitue par une liste exhaustive. Les cours choisis par l'étudiant doivent tenir compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit · être approuvé par la Faculté.

BTO 5421	Les Graminées	l crédit
BIO 5431	Les Cypéracées	l crédit
BIO 5441	Les Composées	1 crédit
BIO 5522	Les Coléoptères	2 crédits
BIO 5542	Les Hyménoptères	2 crédits
		2 crédits
BIO 5562	Les Homoptères	
BIO 5582	Systématique zoologique	2 crédits
BIO 5602	Les Rongeurs	2 crédits
BIO 5702	Physiologie de la reproduction	2 crédits
BIO 5711	Les hormones gastro-intestinales et les	
	enzymes du pancréas exocrine	l crédit
BIO 5721	Estomac: contrôle de la sécrétion acide,	
	pepsine et mucus	l crédit
BIO 5731	Estomac: inhibition de la sécrétion	
	acide, pepsine et mucus	1 crédit
BIO 5741	Le pancréas exocrine: adaptation et	
220 01 12	régime alimentaire	l crédit
BIO 5762	Physiologie végétale III	2 crédits
BIO 5772	Physiologie végétale IV	2 crédits
		3 crédits
BIO 5803	Radiobiologie	
BIO 5822	Biochimie des stéroides	2 crédits
BIO 5831	Mécanismes d'action hormonale	1 crédit
BIO 5842	Biochimie microbienne	2 crédits
BIO 5861	Les membranes biologiques	l crédit

RECHERCHE (20 crédits)

Les activités de recherche du candidat sont étalées sur toute la durée du programme; elles sont sanctionnées par l'attribution en bloc de 20 crédits au dossier du candidat lorsque son mémoire a été accepté.

MEMOIRE (19 crédits)

Le mémoire est un document écrit dans lequel le candidat présente les résultats de ses travaux de recherche. Le mémoire est sanctionné par l'attribution de 19 crédits au dossier du candidat lorsqu'il est accepté par le jury prévu aux règlements.

DOMAINES DE RECHERCHE

Le programme comporte un travail de recherche choisi dans l'un des domaines suivants:

- Entomologie
- Microbiologie
- Physiologie-Biochimie
- Zoologie-Botanique

C) PROGRAMME DE 3E CYCLE

TITRE: Doctorat en biologie

GRADE: Philosophiae doctor SIGLE: Ph.D.

DUREE MINIMALE: 6 trimestres CREDITS: 90

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études doctorales en biologie;
- b) être détenteur d'un diplôme de 2e cycle en biologie ou son équivalent;
- c) démontrer à un examen oral qu'il comprend les textes scientifiques français et anglais; il peut également être appelé à subir un examen écrit à la discrétion de l'examinateur;
- d) s'assurer, auprès du directeur du Département de biologie, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de biologie serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de biologie

OBJECTIFS DU PROGRAMME

Former des chercheurs autonomes tout en assurant un approfondissement des connaissances dans un secteur de la biologie.

INSCRIPTION: Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte des activités qu'on peut regrouper sous les titres suivants: cours, examen général, recherche et thèse.

COURS (2 crédits au minimum)*

Cours obligatoires (2 crédits):

BIO 5021	Séminaires de recherche	 1 crédit

Cours au choix**

BTO 5031.	Nomenclature botanique	l crédit
	Différenciation cellulaire	
BIO 5143	Ecologie du milieu III	3 crédits
BIO 5162	Ecologie des insectes	2 crédits
	Ecologie microbienne	
BIO 5202	Ecologie des vertébrés	2 crédits
BIO 5411	Les Ptéridophytes	l crédit
BIO 5421	Les Graminées	l crédit
BIO 5431	Les Cypéracées	l crédit
BIO 5441	Les Composées	l crédit

- * En plus de s'inscrire aux séminaires BIO 5011 et BIO 5021, l'étudiant doit s'inscrire annuellement à un séminaire de recherche (BIO 5041, BIO 5051, BIO 5061) aussi longtemps qu'il n'a pas été autorisé à rédiger sa thèse.
- ** Cette liste de cours au choix est donnée à titre de suggestion et ne constitue pas une liste exhaustive. Les cours choisis par l'étudiant doivent tenir compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit être approuvé par la Faculté.

BIO 5522	Les Coléoptères	2 crédits
BIO 5542	Les Hyménoptères	2 crédits
BIO 5562	Les Homoptères	2 crédits
		2 crédits
BIO 5582	Systematique zoologique	
BIO 5602	Les Rongeurs	2 crédits
BIO 5702	Physiologie de la reproduction	2 crédits
BIO 5711	Les hormones gastro-intestinales et les	
	enzymes du pancréas exocrine	l crédit
BIO 5721	Estomac: contrôle de la sécrétion acide.	
	pepsine et mucus	l crédit
BIO 5731	Estomac: inhibition de la sécrétion	
BIO 3/31	acide, pepsine et mucus	1 crédit
BIO 5741	Le pancréas exocrine et les glandes salivaires	l crédit
BIO 5751	Le pancréas exocrine: adaptation et	
	régime alimentaire	1 crédit
BIO 5762	Physiologie végétale III	2 crédits
BIO 5772	Physiologie végétale IV	2 crédits
BIO 5803	Radiobiologie	3 crédits
BIO 5822	Biochimie des stéroides	2. crédits
		l crédit
BIO 5831	Mécanismes d'action hormonale	
BIO 5842	Biochimie microbienne	2 crédits
BIO 5861	Les membranes biologiques	l crédit

EXAMEN GENERAL (10 crédits)

Au plus 1 ans après sa 1re inscription, le candidat au doctorat doit subir un examen général comportant une épreuve orale devant un jury d'au moins 3 membres. La nature de l'examen général et la composition du jury soit déterminés par la Faculté. L'é-tudiant doit alors faire preuve d'une connaissance approfondie du domaine dans lequel il se spécialise et d'une connaissance adéquate dans les domaines connexes.

Cet examen est sanctionné, sur réussite, par l'attribution de 10 crédits au dossier de l'étudiant.

RECHERCHE (44 crédits)

Les activités de recherche constituent un élément fondamental de ce programme et elles s'étalent sur toute sa durée. Elles sont sanctionnées par l'attribution en bloc de 44 crédits au dossier de l'étudiant lorsqu'il a soutenu sa thèse et que celle-ci a été acceptée par le jury prévu aux règlements.

THESE (34 crédits)

La thèse est un document écrit dans lequel l'étudiant présente les résultats de ses travaux de recherche. L'acceptation de la thèse par le jury prévu aux règlements est sanctionnée par l'attribution de 34 crédits au dossier de l'étudiant.

DOMAINES DE RECHERCHE

Le programme comporte un travail de recherche choisi dans l'un des domaines suivants:

- Entomologie;
- Microbiologie;
- Physiologie-Biochimie;
- Zoologie-Botanique.

CHIMIE

A) PROGRAMME DE 1ER CYCLE (96 CREDITS MINIMUM)

1. BACCALAUREAT - Option chimie

TRIMESTRE D'AUTOMNE

Pour les étudiants qui seront inscrits pour la lre fois en septembre 1977.

Cours communs et obligatoires (79 crédits) pour toutes les concentrations.

IKIMESIKE	D ROTOFIAL	INIMAGINA	J 1111211
	Chimie inorganique I Chimie organique I	CHM 1203	Méthodes quantitatives de la chimie (TP)
	Techniques de chimie orga-	CUM 1217	Chimie analytique
CHM 1523			Chimie physique I
	nique et inorganique (TP)		
CHM 2413			Analyse instrumentale
CHM 2612	Chimie organique et biochimie		Chimie organique III
	(TP)	*CHM 2823	Chimie physique I (TP)
CHM 2613	Biochimie	CHM 2912	Traitement des données
CHM 2723	Chimie physique II		expérimentales (cours
CHM 2913	Chimie physique III		et TP)
CHM 3133	Chimie inorganique (TP)	*CHM 2922	Chimie physique IV
CHM 3322	Chimie organique (TP)	CHM 3113	Chimie industrielle
CHM 3523			(cours et TP)
MAT 1082	Informatique	CHM 3123	Chimie inorganique II
MAT 1943	Calcul différentiel et intégral I	*CHM 3213	Analyse instrumentale (TP)
PHY 1423	Instrumentation électro-	*CHM 3222	Analyse organique
	nique (cours et TP)	CHM 3323	Chimie organique avancée (TP)
		ou	
		CHM 3813	Chimie physique II (TP)
		MAT 1963	Calcul différentiel et intégral II

TRIMESTRE D'HIVER

TRIMESTRE DIHIVER

Cours à option: minimum de 11 crédits parmi les cours suivants:

TRIMESTRE D'AUTOMNE	TRIMESTRE	D'HIVER
CHM 3023 Chimie des macromolécules CHM 4103 Chimie du milieu	CHM 3623	Synthèse organique Chimie des protéines Electrochimie

Un maximum de 6 crédits hors département de niveau de ler cycle peut également faire partie des 11 crédits à option.

- * Cours répétés au trimestre d'été pour les étudiants du régime coopératif.
- 2. BACCALAUREAT Option chimie (biochimie)

TRIMESTRE DIALITOMNE

Cours communs et obligatoires (79 crédits minimum)

INTEGINE	D AGTORAGE	TRIMESTRE	BHITEK
BIO 1703	Physiologie animale I	BIO 1723	Physiologie animale II
BIO 2802	Biochimie II	BIO 2852	Biochimie II (TP)
BIO 2842	Biochimie III	CHM 1203	Méthodes quantitatives
CHM 1133	Chimie inorganique I		de la chimie (TP)
CHM 1423	Chimie organique I	CHM 1213	Chimie analytique
CHM 1523	Techniques de chimie orga-	CHM 1714	Chimie physique I
	nique et inorganique (TP)	CHM 2223	Analyse instrumentale

CHM 2413	Chimie organique II		
CHM 2612	Chimie organique et	CHM 2523	Chimie organique III
	biochimie (TP)		Chimie physique I (TP)
CHM 2613	Biochimie	CHM 2912	Traitement des données
CHM 2723	Chimie physique II		expérimentales (cours
	Chimie organique (TP)		et TP)
	Informatique	СНМ 3213	Analyse instrumentale
MAT 1943	Caicul différentiel et		(TP)
	intégral I	CHM 3222	Analyse organique
PHY 1423	Instrumentation électro-	CHM 3323	Chimie organique avancée
	nique (cours et TP)		(TP)
		СНМ 3612	Biosynthèse
		CHM 3623	Chimie des protéines
		MAT 1963	Calcul différentiel et intégral II

Cours à option: minimum de 11 crédits parmi les cours suivants:

BIO 2123	Microbiologie	BIO 2703	
BIO 2131	Microbiologie (TP)	BIO 3122	Immunologie
BIO 3143	Génétique	BIO 3131	Immunologie (TP)
BIO 3151	Génétique (TP)	BIO 3182	Virologie
BIO 3722	Biochimie de la		Virologie (TP)
	nutrition	BIO 3702	Physiologie animale III
BIO 3822	Endocrinologie	BIO 3802	Biochimie clinique
CHM 2913	Chimie physique III	BIO 3811	Biochimie clinique (TP)
CHM 3023	Chimie des macromolécules	CHM 2922	Chimie physique IV
CHM 3523	Chimie organique IV	CHM 3423	Synthèse organique
CHM 4103	Chimie du milieu		

TRIMESTRE D'HIVER

TRIMESTRE D'HIVER 1978

Un maximum de 6 crédits hors département de niveau de ler cycle peut également faire partie des 11 crédits à option.

3. Programme de transition pour les étudiants dont la lre inscription remonte à septembre 1976 (92 crédits minimum).

Tous ces étudiants s'intègreront au nouveau programme dès septembre 1977 à une seule exception: au trimestre d'automne 1977, CHM 2912 Traitement des données expérimentales (cours et TP), remplacera le cours MAT 1082 Informatique.

- 4. Programme de transition pour les étudiants dont la lre inscription remonte à septembre 1975 (96 crédits minimum).
- a. Option chimie

TRIMESTRE D'AUTOMNE

Cours obligatoires

TRIMESTRE D'AITTOMNE

TRIMESTRE D'AUTOMNE 1977

CHM 3213	Analyse instrumentale	CHM 3113	Chimie industrielle (cours et TP)
	Chimie organique (TP) Chimie organique IV	CHM 3323	Chimie organique avancée (TP)
		ou CHM 3813	Chimie physique II (TP)

Cours à option: minimum de 11 crédits parmi les cours suivants:

CHM 3023 Chimie des macromolécules CHM 3423 Synthèse organique CHM 3512 Chimie hétérocyclique CHM 3623 Chimie des protéin	
CHM 4103 Chimie du milieu CHM 3913 Electrochimie	
CHM 4453 Chimie physique des solutions . CHM 4423 Spectroscopie anal ioniques CHM 4512 Chimie physico-org	

Un maximum de 6 crédits hors département de niveau de ler cycle peut également faire partie des 11 crédits à option.

b. Option chimie (chimie appliquée, régime coopératif)

Cours obligatoires:

TRIMESTRE D'AUTOMNE TRIMESTRE D'HIVER CHM 3322 Chimie organique (TP) CHM 3523 Chimie organique IV CHM 3113 Chimie industrielle (cours et TP) CHM 3123 Chimie inorganique II PHY 2953 Electronique et instru-CHM 3323 Chimie organique avancée (TP) mentation physique

ou

CHM 3813 Chimie physique II (TP)

Cours à option: minimum de 14 crédits parmi les cours suivants:

TRIMESTRE D'AUTOMNE	TRIMESTRE D'HIVER
CHM 3023 Chimie des macromolécules CHM 4103 Chimie du milieu	CHM 3423 Synthèse organique CHM 3623 Chimie des protéines CHM 3913 Electrochimie CHM 4423 Spectroscopie analytique CHM 4512 Chimie physico-organique

c. Option chimie (biochimie)

Cours obligatoires:

MOTIFICATOR DILLIMONOUS

TRIMESTRE D'AUTOMNE	TRIMESTRE D'HIVER
BIO 2802 Biochimie II BIO 2842 Biochimie III CHM 3213 Analyse instrumentale (TP) CHM 3322 Chimie organique (TP)	BIO 2852 Biochimie II (TP) CHM 3323 Chimie organique avancée (TP) CHM 3612 Biosynthèse CHM 3623 Chimie des protéines

TRANSPORT DILLINGS

Cours à option: minimum de 13 crédits parmi les cours suivants:

TRIMESTRE	D'AUTOMNE	TRIMESTRE	D'HIVER
BIO 2123	Microbiologie	BIO 2703	Physiologie cellulaire
BIO 2131	Microbiologie (TP)	BIO 3122	Immunologie
BIO 3143	Génétique	BIO 3131	Immunologie (TP)
BIO 3151	Génétique (TP)	BIO 3182	Virologie
BIO 3722	Biochimie de la nutrition	BIO 3191	Virologie (TP)
BIO 3822	Endocrinologie	BIO 3702	Physiologie animale III
CHM 2913	Chimie physique III	BIO 3802	Biochimie clinique
CHM 3512	Chimie hétérocyclique	BIO 3811	Biochimie clinique (TP)
CHM 3523	Chimie organique IV	CHM 2922	Chimie physique IV
CHM 4103	Chimie du milieu		Synthèse organique
			Chimie physico-organique

Un maximum de 6 crédits hors département de miveau de ler cycle peut également faire partie des 13 crédits à option.

5. Programme de transition pour les étudiants de la concentration Chimie appliquée (régime coopératif) dont la lre inscription remonte à septembre 1974. (96 crédits minimum).

TRIMESTRE D'AUTOMNE

```
Cours obligatoires:
```

- *CHM 3213 Analyse instrumentale (TP)
- CIIM 3322 Chimie organique (TP)
- CHM 3523 Chimie organique IV
- PHY 2955 Electronique et instrumentation physique
- * Seulement si ce cours n'a pas été suivi à l'été 1976.

Cours à option: minimum de crédits parmi les cours suivants:

- CHM 3023 Chimie des macrémolécules
- CHM 4103 Chimie du milieu
- CHM 4453 Chimie physique des solutions ioniques

Un maximum de 6 crédits hors département de niveau de ler cycle peut également faire partie des crédits à option.

De plus, le Département de chimie collabore à un programme offert par la Direction générale de la Formation des maîtres.

BACCALAUREAT - Option chimie-pédagogie

Cours obligatoires (37 crédits)

- •
- CIM 1133 Chimie inorganique I CIM 1203 Méthodes quantitatives de la chimie
- CHM 1213 Chimie analytique
- CHM 2223 Analyse instrumentale
- CHM 2823 Travaux pratiques de chimie physique I
- CHM 2912 Traitement des données expérimentales
- CIM 2912 Traffement des données experimental
- CHM 3053 Didactique de la chimie I
- CHM 5065 Didactique de la chimie II CHM 5123 Chimie inorganique II
- MAT 1082 Informatique
- MAT 1943 Calcul différentiel et intégral I
- MAT 1963 Calcul différentiel et intégral II
- PHY 1423 Instrumentation électronique

Cours à option (entre 12 et 19 crédits)

BLOC 1

- CHM 1432 Chimie organique I
- CHM 1443 Chimic organique II
- CHM 1451 Travaux pratiques de chimie organique

ou BLOC II

- CHM 1423 Chimie organique I
- CHM 1523 Techniques de chimie organique et inorganique
- CHM 2413 Chimie organique II
- CHM 2523 Chimie organique III
- BLOC III
- CHM 2733 Chimie physique I
- CHM 2745 Chimic physique II

ou BLOC IV

- CHM 1714 Chimie physique I
- CHM 2723 Chimic physique II

Cours à option (entre 4 et 11 crédits)

CHM 2612 Travaux pratiques de biochimie et de chimie organique

CHM 2613 Biochimie

CHM 3213 Travaux pratiques d'analyse instrumentale

CHM 4103 Chimie du milieu

7. Le Département de chimie collabore également à un programme offert par le Département de philosophie de la Faculté des arts. Les étudiants inscrits à ce programme devront suivre un minimum de 30 crédits parmi les cours de la liste suivante:

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

	Chimie inorganique I Chimie organique I	CHM 1203	Méthodes quantitatives de la chimie (TP)
	Techniques de chimie	CHM 1213	Chimie analytique
	organique et inorganique (TP)	CHM 2743	Chimie physique II
CHM 2733	Chimie physique I		•
*MAT 1943	Calcul I		

* Ce cours est aussi offert au trimestre d'hiver.

Cours à option

Aux 24 crédits obligatoires précédents, l'étudiant doit ajouter 6 crédits de cours choisis parmi les cours des Départements de chimie, mathématiques ou biologie.

8. Le Département de chimie collabore de plus avec le Département de géographie de la Faculté des arts dans le cadre de son programme de majeur en géographie et mineur en sciences en offrant les cours suivants:

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

CHM 1432	Chimie inorganique I Chimie organique I Chimie physique I	СНМ	1451	Chimie organique II Chimie organique (TP) Techniques d'analyse
		СНМ	2743	chimique Chimie physique II

B) Programmes de 2e cycle

TITRE: Maîtrise en chimie

GRADE: Maître ès sciences

SIGLE: M.Sc.

DUREE MINIMALE: 3 trimestres CREDITS: 45

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études de 2e cycle universitaire;
- avoir obtenu un baccalauréat spécialisé en chimie d'une université reconnue, ou tout autre diplôme jugé équivalent;
- c) normalement s'être classé dans la lre moitié de son groupe avec une moyenne cumulative d'au moins 2.20, dans un système où la moyenne cumulative maximale est 4.00, ou avoir obtenu des résultats académiques jugés équivalents (par exemple 70%);
- d) s'assurer, auprès du directeur du Département de chimie, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de chimie serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de chimie.

OBJECTIFS DU PROGRAMME

Ce programme avec accent sur la recherche (type R) permet à l'étudiant de s'initier à la recherche et d'acquérir des connaissances approfondies dans un des champs de spécialisation suivants;

- la chimie organique
- la chimie des solutions et des interfaces
- la chimie théorique et la spectroscopie moléculaire
- .- la chimie analytique et appliquée

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

CARACTERISTIQUES DU PROGRAMME

Ce programme comporte 45 crédits dont un minimum de 11 obtenus par des cours, 19 attribués au progrès satisfaisant du projet de recherche et 15 accordés sur acceptation du mémoire de recherche.

Cours du programme

Cours obligatoires (2 crédits)

CHM 5012 Séminaire I 2 crédits

Cours à option (9 crédits)

L'étudiant doit s'inscrire à 3 des cours de la liste suivante, en tenant compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit être approuvé par la Faculté.

CHM 4103	Chimie du milieu	3 crédits
CHM 4423	Spectroscopie analytique	3 crédits
CHM 4453	Chimie physique des solutions ioniques	3 crédits
CHM 5013	Méthodes électroanalytiques	3 crédits
CHM 5223	Séparations chromatographiques	3 crédits
CHM 5323	Chimie organique avancée	etihāro E

CHM 5393	Théorie et application des orbitales moléculaires en	
	chimie organique	
CHM 5483	Spectroscopie avancée	3 crédits
CHM 5523	Résonance magnétique	3 crédits

RECHERCHE (19 crédits)

Les activités de recherche du candidat son étalées sur toute la durée du programme; elles sont sanctionnées par l'attribution en bloc de 19 crédits au dossier du candidat lorsque son mémoire a été accepté.

MEMOIRE (15 crédits)

Le mémoire est un document écrit dans lequel le candidat présente les résultats de ses travaux de recherche. Le mémoire est sanctionné par l'attribution de 15 crédits au dossier du candidat lorsqu'il est accepté par le jury prévu aux règlements.

DOMAINES DE RECHERCHE

Le programme comporte un travail de recherche choisi dans l'un des domaines suivants:

- Chimie analytique et appliquée;
- Chimie organique;
- Chimie théorique et structure moléculaire;
- Chimie des solutions et des interfaces.

TITRE: Maîtrise en chimie appliquée

CONCENTRATION: Analyse instrumentale

GRADE: A déterminer SIGLE: A déterminer

DUREE MINIMALE: 4 trimestres CREDITS: 45

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études de 2e cycle universitaire;
- avoir obtenu um Baccalauréat spécialisé en chimie ou un Baccalauréat en Sciences appliquées, en génie chimique, ou tout autre diplôme de ler cycle universitaire jugé équivalent;
- s'être classé dans la 1re moitié de sa classe avec une moyenne cumulative d'au moins 2.20, dans un système où la moyenne cumulative maximale est 4.00, ou avoir obtenu des résultats académiques jugés équivalents (par exemple 70%);
- d) posséder des connaissances fondamentales en analyse instrumentale, en électrochimie, en cinétique chimique, en électronique, en informatique ou en programmation.

JURIDICTION

Faculté des sciences, Département de chimie

OBJECTIFS DU PROGRAMME

Ce programme a pour objectifs:

- a) De permettre à l'étudiant d'acquérir des connaissances approfondies dans le domaine de l'analyse instrumentale;
- b) de fournir à l'étudiant l'occasion d'appliquer les connaissances acquises à l'Université à des problèmes concrets dans le monde de l'industrie;
- c) d'initier l'étudiant à la recherche appliquée.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

CARACTERISTIQUES DU PROGRAMME

Ce programme est coopératif et comporte 2 stages d'un trimestre chacun. Il comporte également un essai relié à des travaux exécutés durant un stage et rédigés sous la direction d'un professeur du Département de chimie.

ACTIVITES DU PROGRAMME

Ce programme comporte deux types d'activités qu'on peut regrouper sous les titres suivants: cours et essai.

Cours (30 crédits):

Cours obligatoires: (23 crédits)

CHM 4423	Spectroscopie analytique	3 crédits
	Séminaires	
CHM 5013	Méthodes électroanalytiques	3 crédits
CHM 5026	T.P. d'analyse instrumentale I	6 crédits
CHM 5223	Séparations chromatographiques	3 crédits
CHM 5236	T.P. d'analyse instrumentale II	6 crédits

*Cours au choix (7 crédits)

		Biologie du milieu I		
CHM	3023	Chimie des macromolécules	3 crédits	
CHM	3813	T.P. de chimie physique II	3 crédits	
CHM	4453	Chimie physique des solutions ioniques	3 crédits	
GRH	1003	Principes d'administration	3 crédits	
MAT	1082	Informatique	3 crédits	
PHY	2953	Electronique et instrumentation physique · · · · · · · · · · · · · · · · · · ·	3 crédits	
**SCA	610	Contrôle	3 crédits	
**SCA	613	Traîtement des eaux	3 crédits	
**SCA	675	Planification et analyse statistique des essais	3 crédits	

ESSAI(15 crédits)

L'étudiant doit rédiger un essai dans lequel il fait état de son aptitude à traiter systématiquement d'un sujet pertinent à l'analyse instrumentale. L'évaluation de l'essai est faite par un jury d'au moins 2 membres nommées par la Faculté et elle est sanctionnée, sur réussite, par l'attribution de 15 crédits au dossier de l'étudiant.

- Cette liste de cours au choix est donnée à titre de suggestion et ne constitue pas une liste exhaustive. Les cours choisis par l'étudiant doivent tenir compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit être approuvé par la Faculté.
- ** Voir l'annuaire de la Faculté des sciences appliquées.

C) PROGRAMME DE 3E CYCLE

TITRE: Doctorat en chimie

GRADE: Philosophia Doctor SIGLE: Ph.D.
DUREE MINIMALE: 6 trimestres CREDITS: 90

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études doctorales en chimie;
- b) être détenteur d'un diplôme de 2e cycle en chimie ou son équivalent;
- démontrer à un examen oral qu'il comprend les textes scientifiques français et anglais; il peut également être appelé à subir un examen écrit à la discrétion de l'examinateur;
- d) s'assurer, auprès du directeur du Département de chimie, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de chimie serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de chimie.

OBJECTIFS DU PROGRAMME

Former des chercheurs autonomes tout en assurant un approfondissement des connaissances du candidat dans un champ de spécialisation de la chimie.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte des activités qu'on peut regrouper sous les titres suivants: cours, examen général, recherche et thèse

Cours (4 crédits)

Cours obligatoires (4 crédits)

CHM 5122	Séminaire II	2 crédits
CHM 5232	Séminaire III	2 crédits

Cours à option

L'étudiant peut être appelé à suivre des cours figurant dans la liste du programme de 2e cycle en chimie ainsi que certains cours spécialisés parmi les suivants. Le choix tient compte de l'orientation de l'étudiant et de la disponibilité ou non de certains cours et il doit être approuvé par la Faculté.

CHM 5113	Chimie des interfaces	3 crédits
CHM 5313	Analyse conformationnelle et stéréochimie	3 crédits
CHM 5333	Chimie physico-organique avancée	3 crédits
CHM 5353	Photochimie et chimie radicalaire	3 crédits
CHM 5453	Chimie des solutions	3 crédits
CHM 5923	Théorie des groupes et applications en chimie	3 crédits

EXAMEN GENERAL (6 crédits)

Au plus tard 1 ans après sa lre inscription, la candidat au doctorat doit subir un examen général comportant une épreuve écrite ou une épreuve orale devant un jury d'au moins 3 membres. La nature de l'examen général et la composition du jury sont déterminés par la Faculté.

DOMAINES DE RECHERCHE

Le programme comporte un travail. de recherche choisi dans l'un des domaines suivants:

- Chimie organique
- Chimie des solutions et des interfaces
- Chimie théorique et structure moléculaire

Des spécialisations en chimie analytique et en chimie appliquée sont offertes à l'intérieur des regroupements énumérés ci-dessus.

L'étudiant doit alors faire preuve d'une connaissance approfondie du domaine dans lequel il se spécialise et d'une connaissance adéquate dans les domaines connexes.

Cet examen est sanctionné, sur réussite, par l'attribution de 6 crédits au dossier de l'étudiant.

RECHERCHE (50 crédits)

Les activités de recherche constituent un élément fondamental de ce programme et elles s'étalent sur toute sa durée. Elles sont sanctionnées par l'attribution en bloc de 50 crédits au dossier de l'étudiant lorsqu'il a soutenu sa thèse et que celle-ci a été acceptée par le jury prévu aux règlements.

THESE (30 crédits)

La thèse est un document écrit dans lequel l'étudiant présente les résultats de ses travaus de recherche; ceux-ci doivent être originaux et présenter une contribution importante à l'avancement des connaissances. L'acceptation de la thèse par le jury prévu aux règlements est sanctionnée par l'attribution de 30 crédits au dossier de l'étudiant.

MATHEMATIQUES

A) PROGRAMME DE 1ER CYCLE (92 CREDITS)

Cours communs et obligatoires pour toutes les concentrations (34 crédits)

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

MAT	1224	Algèbre I	MAT	1424	Algèbre linéaire II
		Analyse I	MAT	1544	Analyse II
MAT	1284	Programmation I	†MAT	2594	Probabilités et statis-
MAT	1324	Algèbre linéaire I			tiques II
MAT	2494	Probabilités et statistiques I	*MAT	3202	Travail dirigé I

- t Le cours MAT 2594 est aussi offert au trimestre d'été.
- * Ce cours donné sous forme tutorale est aussi offert aux trimestres d'automne et d'éfé.
- BACCALAUREAT Option mathématiques

En plus de suivre tous les cours du bloc commun, l'étudiant doit s'inscrire à au moins 6 crédits des cours de la série 3000, suivre un nombre adéquat de crédits choisis parmi les cours offerts dans les diverses concentrations de mathématiques et, s'il le souhaite, s'inscrire à au plus 6 crédits de cours pris hors département, sujets à l'approbation du directeur du Département de mathématiques, le tout devant totaliser 92 crédits.

BACCALAUREAT - Option mathématiques (mathématiques pures)

En plus de suivre tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

MAT 2224	Algèbre II	MAT 1264	Modèles mathématiques
MAT 2343	Introduction à la topologie	MAT 1563	Géométrie
MAT 2444	Analyse III	MAT 2213	B Ensembles ordonnées
MAT 3263	Equations différentielles	MAT 2,254	Fonctions complexes I
MAT 3343	Intégration et théorie des fonctions	MAT 2544	Calcul différentiel et intégral dans R
		MAT 3223	Théorie des corps
		MAT 3443	Théorie des fonctions et
		•	espaces fonctionnels

et s'inscrire à au moins 8 crédits parmi les cours suivants et à un nombre adéquat de crédits choisis parmi les cours des autres concentrations ou des autres départements de l'Université, le nombre de crédits pris hors département ne devant pas dépasser 6 et étant sujet à l'approbation du directeur du Département de mathématiques.

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

		•			Topologie algébrique
*MAT	3212	Travail dirigé II	MAT 3	363	Géométrie différentielle
MAT	3313	Logique			

- * Ce cours, donné sous forme tutorale, est aussi offert au trimestre d'hiver.
- 3. BACCALAUREAT Option mathématiques (mathématiques appliquées)

En plus de suivre tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante.

TRIMESTRE	D'AUTOMNE	TRIMESTRE	D'HIVER	TRIMESTRE	D'ETE
MAT 2173	Programmation linéaire	MAT 1264	Modèles mathé- matiques	MAT 2254	Fonctions complexes I
MAT 2343	Introduction à la topologie	+MAT 1493	Laboratoire de statistique des-	MAT 2373	Méthodes nu- mériques I
MAT 2444	Analyse III		criptive	MAT 2544	Calcul dif-
	·	MAT. 2254	Fonctions com- plexes I		férentiel et intégral dans R ⁿ
		MAT 2373	Méthodes numé-		R ⁿ o
			riques I	**MAT 2594	Probabilités
		MAT 2544	Calcul différen- tiel et intégral dans R ⁿ		et statisti- ques II

et s'inscrire à au moins 18 crédits parmi les cours suivants:

TRIMESTRE D'AUTOMNE

TRIMESTRE D'AUTOMNE

métriques

		·
MAT 3263 Equations différentielles	MAT 3173	Programmation non linéai-
MAT 3293 Processus stochastiques		re et en nombres entiers
MAT 3373 Méthodes de mathématiques	MAT 3193	Statistique mathématique

TRIMESTRE D'HIVER

TRIMESTRE D'HIVER

appliquées MAT 3273 Méthodes numériques II
MAT 3403 Modèles de la recherche MAT 3613 Modèles statistiques
opérationnelle linéaires
MAT 3603 Statistiques non para-

et s'inscrire à au moins 5 crédits sélectionnés parmi les trois cours non-choisis dans la liste précédente ou encore parmi les cours suivants:

dans la liste	précédente ou	encore parmi	les cours	suivants:	

MAT	1323	Mathématiques discrètes	***MAT	1382	Programmation II A
MAT	2224	Algèbre II	***MAT	1384	Programmation II
MAT	2384	Structures des infor-	MAT	1563	Géométrie
		mations I	MAT	2213	Ensembles ordonnées
MAT	3113	Histoire des mathématiques	MAT	2284	Programmation interne
MAT	3343	Intégration et théorie			des ordinateurs
		des fonctions .	MAT	2393	Théorie de l'échantillon-
MAT	3593	Théorie de l'information			nage
			MAT	3443	Théorie des fonctions et espaces fonctionnels
			MAT	3983	Simulation des systèmes

et compléter les 92 crédits de son programme en s'inscrivant à au plus 6 crédits de cours hors-département (ces cours étant sujet à l'approbation du directeur du Département de mathématiques) ou encore à tout cours offert au Département.

- t Ce cours n'est accessible qu'aux étudiants inscrits en session 1, 2 ou 3.
- * Cours de l'hiver répétés à l'été.
- ** Déjà énuméré dans le tronc commun.
- *** Le cours MAT 1382 n'est accessible qu'aux étudiants n'ayant pas encore fait leur ler stage. L'étudiant peut s'inscrire seulement à un cours, soit MAT 1382 ou MAT 1384.
- BACCALAUREAT Option mathématiques (informatique)

Cette concentration est offerte uniquement aux étudiants qui font leurs études dans un programme de type coopératif.

En plus de suivre tous les cours du bloc commun, l'étudiant doit suivre tous les cours de la liste suivante:

TRIMESTRE D'AUTOMNE		TRIMESTRE D'HIVER		TRIMESTRE D'ETE		
MAT	1323	Mathématiques discrètes	MAT 1384	Programmation II	MAT 2483	Organisation d'un ordinateur
MAT	2184	Systèmes de pro- grammation	*MAT 2284	Programmation interne des	MAT 2584	Langages de pro- grammation
***MAT	2384	Structures des informations I	~	ordinateurs	**MAT 2594	Probabilités et statistiques I

et s'inscrire à au moins un des deux cours MAT 2173 Programmation linéaire (automne) MAT 2373 Méthodes numériques I (hiver ou été)

et s'inscrire à au plus 24 crédits parmi les cours suivants:

TRIMESTRE D'AUTOMNE	TRIMESTRE	D'HIVER
MAT 3283 Systèmes d'exploitation I	I MAT 3183	Systèmes d'exploitation I
MAT 3633 Analyse fonctionnelle	MAT _e 3313	Logique
des systèmes	MAT 3583	Langages formels
MAT 3683 Construction de compilate	urs MAT 3643	Analyse organique des
MAT 3783 Organisation approfondie		systèmes
d'un ordinateur	MAT, 3863	Structure des informa-
MAT 3853 Téléinformatique		tions II ,
·	MAT 3893	Systèmes à temps partagé
	MAT 3983	Simulation des systèmes

et compléter les 92 crédits de son programme en s'inscrivant à au plus 6 crédits de cours hors département (ces cours étant sujets à l'approbation de directeur du Département de mathématiques) et à un nombre adéquat de crédits choisis parmi les cours suivants:

TRIMESTRE	D'AUTOMNE	TRIMESTRE	D'HIVER	TRIMESTRE	D'ETE
MAT 2173	Programmation linéaire	MAT 1264	Modèles mathé- matiques	MAT 2373	Méthodes numériques I
MAT 3403	Modèles de la recherche opéra-	MAT 2373	Méthodes numé- riques I		
MAT 3593	tionnelle Théorie de l'in-	MAT 2393	Théorie de l'échan- tillonnage	-	
PIKT 3333	formation	MAT 3273	Méthodes numéri- ques II		
		MAT 3613	Modèles statis- tiques linéaires		

- * Ce cours est offert exceptionnellement à l'automne 1977. Les étudiants dont la lre inscription date de septembre 1976 ont suivi MAT 2384 en 2è session et suivront MAT 2284 en 3e session à l'automne 1977.
- ** Cours déjà énuméré dans le tronc commun.
- *** Ce cours ne sera pas offert à l'automne 1977.
- BACCALAUREAT Option mathématiques (mathématiques-économique)

Le programme comporte un majeur de 62 crédits en mathématiques dont 41 sont obligatoires et un mineur en économique de 30 crédits dont 18 sont obligatoires.

MAJEUR

Cours obligatoires:

MAT 1244 Analyse I

MAT 1264 Modèles mathématiques

MAT 1284 Programmation I

MAT 1324 Algèbre linéaire I

MAT 1424 Algèbre linéaire II

```
MAT 1493
          Laboratoire de statistique descriptive
MAT 1544
          Analyse II
MAT 2173
          Programmation linéaire
MAT 2373
          Méthodes numériques I
MAT 2494
          Probabilités et statistiques I
MAT 2594
          Probabilités et statistiques II
```

Cours à option

Un choix parmi les cours offerts dans les diverses concentrations de mathématiques afin de totaliser les 62 crédits du majeur.

MINEUR

Cours obligatoires:

```
ECO 1013 Principes micro-économiques
ECO 1113 Principes macro-économiques
ECO 2123 Analyse micro-économiques I
ECO 2223 Analyse micro-économiques II
ECO 2323 Analyse macro-économique I
ECO 2423 Analyse macro-économique II
```

Cours à option:

Un choix parmi les cours offerts en Economique afin de totaliser les 30 crédits du mineur.

De plus, le Département de mathématiques collabore à des programmes offerts par la Direction générale de la Formation des maîtres.

(au moins 6 crédits)

BACCALAUREAT - Option mathématiques (mathématiques-pédagogie)

```
Cours obligatoires: (54 crédits)
                                                  Cours à option:
MAT 1224
         Algèbre I
                                                  MAT 1284
                                                            Programmation I
MAT 1244
         Analyse I
                                                  MAT 1323
                                                            Mathématiques discrètes
MAT 1264
         Modèles mathématiques
                                                  MAT 2173
                                                            Programmation linéaire
                                                  MAT 2444
MAT 1324
         Algèbre linéaire I
                                                            Analyse III
MAT 1424
         Algèbre linéaire II
MAT 1544
          Analyse II
MAT 2103 Didactique I
MAT 2213
         Ensembles ordonnées
MAT 2224
         Algèbre II
MAT 2233
         Introduction à la topologie
MAT 2263
          Géométrie
MAT 2494
          Probabilités et statistiques I
MAT 2594
          Probabilités et statistiques II
MAT 3103
          Didactique I
MAT 3113 Histoire des mathématiques
```

ou, compte tenu des cours prérequis, tout autre cours des séries 2000 ou 3000. Pour les 30 crédits du mineur, veuillez consulter l'annuaire de la Formation des maîtres.

- Outre le programme de baccalauréat, option mathématiques (mathématiques pédagogie) décrit précédemment, figurent aussi les programmes suivants:
- Baccalauréat en enseignement élémentaire option: majeur mathématique a)
- Baccalauréat en enseignement élémentaire option: mineur mathématique bì
- c) Baccalauréat en enseignement enfance inadaptée, élémentaire
- Baccalauréat en enseignement enfance inadaptée, secondaire
- Maîtrise en enseignement à l'élémentaire option: mathématique

Les cours suivants, dont la teneur est essentiellement didactique, constituent la série de cours obligatoires que doivent suivre, au Département de mathématiques, les étudiants de la Formation des Maîtres, engagés dans l'un ou l'autre des programmes cités plus haut. Pour plus de détails, consulter l'annuaire de la Formation des Maîtres.

BACCALAUREAT EN ENSEIGNEMENT ELEMENTAIRE (majeur mathématique)

MAT 2853 Probabilités et statis-MAT 1803 Ensembles et logique

MAT 1813 Relations et fonctions tiques MAT 3823 Algèbre

MAT 1863 Géométrie MAT 2843 Arithmétique MAT 3833 Séminaire (cours exclusif

au ler cycle de l'élé-

mentaire)

MAT 3843 Séminaire (cours exclusif au 2e cycle de l'élémen-

taire

BACCALAUREAT EN ENSEIGNEMENT ELEMENTAIRE (mineur mathématique)

MAT 3873 Activités mathématiques MAT 1873 Activités mathématiques I MAT 2873 Activités mathématiques II

III

BACCALAUREAT EN ENSEIGNEMENT, ENFANCE INADAPTEE (élémentaire)

MAT 2813 Laboratoire de mathéma-MAT 2803 Laboratoire de mathématiques I tiques II

BACCALAUREAT EN ENSEIGNEMENT, ENFANCE INADAPTEE (secondaire)

MAT 1853 Activités d'éveil mathématiques

MAITRISE EN ENSEIGNEMENT A L'ELEMENTAIRE (option mathématiques)

a) Un cours (3 crédits) parmi les suivants:

MAT 4863 Géométrie MAT 4823 Algèbre

b) Un cours (3 crédits) parmi les suivants:

MAT 1193 Méthodes de raisonnement MAT 1323 Mathématiques discrètes en statistique MAT 3113 Histoire des mathématiques

MAT 4883 Séminaire MAT 1224 Algebre I (par les étu-

diants qui en feraient pas

MAT 4823)

MAT 1284 Programmation I

c) 2 séminaires (6 crédits)

MAT 4873 Séminaire sur la didactique MAT 4893 Séminaire sur les expérides mathématiques mentations menées par les

étudiants

8. Le Département de mathématiques collabore également à des programmes offerts par la Faculté des arts.

Les cours suivants constituent la série de cours obligatoires du sujet mineur en mathématiques que doivent suivre, à la Faculté des sciences, les étudiants de la Faculté des arts engagés dans le programme de baccalauréat avec majeur en économique et mineur en mathématiques. Pour plus de détails, consulter l'annuaire de la faculté des arts, section du Département d'économique.

TRIMESTRE D'AUTOMNE

*MAT 1284 Programmation I MAT 1324 Algèbre linéaire I MAT 1943 Calcul différentiel et intégral I MAT 2494 Probabilités et statistiques I

TRIMESTRE D'HIVER

*MAT 1083 Informatique MAT 1424 Algèbre linéaire II MAT 1963 Calcul différentiel et intégral II MAT 2594 Probabilités et statistiques II

Deux autres cours dont l'un en mathématiques et l'autre, au choix, en mathématiques ou en économique.

- * L'un ou l'autre des 2 cours MAT 1284, MAT 1083 est requis.
- 9. Les cours suivants constituent la série de cours obligatoires du sujet mineur en mathématiques que doivent suivre, à la Faculté des sciences, les étudiants de la Faculté des arts engagés dans le programme de baccalauréat avec majeur en géographie et mineur en mathématiques. Pour plus de détails, consulter l'annuaire de la Faculté des arts, section du Département de géographie.

TRIMESTRE D'AUTOMNE

MAT 1093 Statistique descriptive MAT 1293 Statistique I MAT 1323 Mathématiques discrètes MAT 1883 Mathématiques appliquées aux affaires MAT 1943 Calcul différentiel et intégral I

TRIMESTRE D'HIVER

MAT 1083 Informatique MAT 1384 Programmation II MAT 1393 Statistiques II MAT 1763 Equations différentielles MAT 1934 Algèbre linéaire MAT 1963 Calcul différentiel et intégral II

Les étudiants ont la possibilité de choisir 10 cours parmi les 11 cours suggérés.

10. Le Département de mathématiques collabore également à un programme offert par le Département de philosophie de la Faculté des arts. Les étudiants inscrits à ce programme devront suivre un minimum de 30 crédits parmi les cours de la liste suivante:

MAT 1224 Algebre I MAT 1244 Analyse I

MAT 1264 Modèles mathématiques

MAT 1284 Programmation I

MAT 1323 Mathématiques discrètes

MAT 1324 Algèbre linéaire I

MAT 1563 Géométrie MAT 2173 Programmation linéaire

MAT 2213 Ensembles ordonnées

MAT 2233 Introduction à la topologie MAT 2494 Probabilités et statistiques I

MAT 3113 Histoire des mathématiques

MAT 3313 Logique

11. BACCALAUREAT - majeur en informatique et mineur en sciences de l'administration.

Ce programme est offert uniquement aux étudiants qui font leurs études dans un programme de type coopératif.

TRIMESTRE D'AUTOMNE

Session I *COM 1003 Comptabilité I GRH 1003 Principes d'administration MAT 1284 Programmation I MAT 1924 Algèbre linéaire

TRIMESTRE D'HIVER

	Sess	ion 2
GRH	2103	Dynamique des
		organisations
MAT	1234	Calcul diffé-
		rentiel et in-
		tégral
MAT	1384	Programmation II

TRIMESTRE D'ETE

Session 4 FEC 1003 Finance I GRH 4013 Développement organisationnel MAT 2594 Probabilités et Statistiques II MQG 1003 Gestion des opérations

*MAT 2284 Programmation interne des ordinateurs

^{*} Ce cours a été offert exceptionnellement à l'été 1977.

† 1 2 l cours à option parmi les suivants:

MAT 2373 Methodes numeriques I
MAT 2483 Organisation d'un ordinateur
MAT 2584 Langages de programmation

TRIMESTRE D'AUTOMNE

Session 3

MAR 1003 Marketing I
MAT 1323 Mathématiques discrètes
MAT 2184 Systèmes de programmation
*MAT 2384 Structures des informations I
MAT 2494 Probabilités et statistiques I

TRIMESTRE D'HIVER

Session 5

GRH 4843 Structures organisationnelles MAT 3643 Analyse organique des systèmes MAT 3983 Simulation des systèmes

2 cours à option parmi les suivants:

COM 1013 Contrôle

FEC 1013 Raisonnement économique

FEC 2003 Finance II

GRH 1203 Gestion du personnel

MAR 2303 Comportement du consommateur

MAT 1264 Modèles mathématiques

MAT 3183 Systèmes d'exploitation I

MAT 3613 Modèles statistiques linéaires

MAT 3863 Structures des informations II

MAT 3893 Systèmes à temps partagé

Session 6

opérationnelle MAT 3633 Analyse fonctionnelle des systèmes MAT 3853 Téléinformatique 2 cours à option parmi les suivants: FEC 1013 Raisonnement économique FEC 2003 Finance II FEC 2013 Gestion du fonds de roulement GRH 1203 Gestion du personnel MAR 2303 Comportement du consommateur MAT 2173 MAT 3283 Programmation linéaire Systèmes d'exploitation II MAT 3293 Processus stochastiques MAT 3783 Organisation approfondie

d'un ordinateur

MAT 3403 Modèles de la recherche

* MAT 2384 ne sera pas offert à la session d'automne 1977. Cependant le cours MAT 2284 sera offert exceptionnellement à l'automne 1977. Il est à noter que les étudiants dont la lre inscription date de septembre 1976 suivant MAT 2284 en lère session, MAT 2384 en 2c et COM 1003 en 3e session. 12. Programme de transition pour les étudiants inscrits au programme de baccalauréat option mathématiques en septembre 1975 et qui ont été intégrés au programme de baccalauréat (majeur en informatique et mineur en sciences de l'administration) à compter de septembre 1976.

Session I	(automne 1975)	Session 2	(hiver 1976)
GRH 1003	Principes d'administration	COM 1003	Comptabilité I
	Algèbre I	MAR 1003	
	Analyse I	MAT 1323	Mathématiques discrètes
	Programmation I	MAT 1384	Programmation II
	ū	MAT 1924	Algebre linéaire
Session 3	(automne 1976)	Session 4	(été 1977)
MAT 2184	Systèmes de programmation	FEC 1003	Finance I
MAT 2284	Programmation interne des	*MAT 1544	
	ordinateurs	MAT 2594	Probabilités et statisti-
MAT 2384	Structures des informations I		tiques II
MAT 2494	Probabilités et statistiques I	MQG 1003	Gestion des opérations
		l cours à	option parmi les suivants:
		MAT 2373	Méthodes numériques I
		MAT 2483	Organisation d'un ordi- nateur
		MAT 2584	Langages de programmation
Session 5	(hiver 1978)	Session 6	(automne 1978)
GRH 2103 GRH 4843	Dynamique des organisations Structures organisationnelles	GRH 4013	Développement organisa- tionnel
	Analyse organique des systèmes	MAT 3403	Modèles de recherche opérationnelle
	•	MAT 3633	
		MAT 3853	Téléinformatique

et un cours à option choisit dans la liste du programme de baccalauréat (majeur en informatique et mineur en sciences de l'administration)

^{*} Ce cours a été offert exceptionnellement à l'été 1977.

B) Programme de 2e cycle

TITRE: Maîtrise en mathématiques

GRADE: Maître ès sciences SIGLE: M.Sc.

DUREE MINIMALE: 3 trimestres CREDITS: 45

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études de 2e cycle universitaire;
- avoir obtenu un baccalauréat spécialisé en mathématiques d'une université reconnue, ou tout autre diplôme jugé équivalent;
- c) s'être classé dans lre moitié de sa classe avec une moyenne cumulative d'au moins 2.20, dans un système où la moyenne cumulative maximale est 4.00, ou avoir obtenu des résultats académiques jugés équivalents (par exemple 70%);
- d) s'assurer, auprès du directeur du Département de mathématiques, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de mathématiques serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de mathématiques.

OBJECTIFS DU PROGRAMME

Ce programme avec accent sur la recherche permet à l'étudiant d'approfondir ses connaissances générales en mathématiques, de commencer à se spécialiser dans un secteur de cette science et de s'initier à la recherche.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte 3 types d'activités qu'on peut regrouper sous les titres suivants: cours, recherche, mémoire.

Cours (au moins 18 crédits)

Le programme comporte 5 cours dont au moins 3 (c'est-à-dire au moins 12 crédits) sont choisis dans la liste suivante; les autres crédits de cours peuvent être choisis parmi les cours de niveau 3000 du département; ce choix tient compte de l'orientation de l'étudiant et de la disponibilité ou non de certains cours et il doit être approuvé par la Faculté.

MAT 4294	Probabilité	4 crédits
MAT 4394	Recherche opérationnelle	4 crédits
MAT 5184	Organisation et recherche de l'information	4 crédits
MAT 5194	Statistique appliquée	4 crédits
MAT 5224	Théorie des catégories	4 crédits
MAT 5234	Topologie algébrique	4 crédits
MAT 5244	Mesure et intégration	4 crédits
MAT 5274	Théorie de l'approximation	4 crédits
MAT 5284	Théorie des automates et des langages formels I	4 crédits
MAT 5294	Tests d'hypothèses	4 crédits
MAT 5324	Algèbre non commutative	4 crédits
MAT 5334	Topologie générale	4 crédits
MAT 5344	Analyse fonctionnelle I	4 crédits
MAT 5384	Théorie des automates et des langages formels II	4 crédits
MAT 5394	Théorie de la décision	4 crédits
MAT 5434	Géométrie combinatoire	4 crédits

		Analyse fonctionnelle II	
MAT	5494	Séries chronologiques	4 crédits
MAT	5584	Fiabilité des sytèmes	4 crédits
MAT	5594	Méthodes non paramétriques	4 crédits
MAT	5684	Traitements des images et reconnaissance des formes	4 crédits
MAT	5694	Modèles de probabilités appliquées	4 crédits
MAT	5784	Analyse syntaxique	4 crédits
MAT	5984	Simulation de modèles	4 crédits

RECHERCHE (14 crédits)

Les activités de recherche du candidat sont étalées sur toute la durée du programme; elles sont sanctionnées par l'attribution en bloc de 14 crédits au dossier du candidat lorsque son mémoire a été accepté.

MEMOIRE (13 crédits)

Le mémoire est un document écrit dans lequel le candidat présente les résultats de ses travaux de recherche. Le mémoire est sanctionné par l'attribution de 13 crédits au dossier du candidat lorsqu'il est accepté par le jury prévu aux règlements.

DOMAINES DE RECHERCHE

Le programme comporte des activités de recherche dans l'un ou l'autre des domaines suivants:

- Algèbre et géométrie combinatoire;
- Analyse, Analyse fonctionnelle;
- Probabilités et statistiques;
- Recherche opérationnelle;
- Simulation et fiabilité des systèmes;
- Informatique

C) PROGRAMME DE 3E CYCLE

TITRE: Doctorat en mathématiques

GRADE: Philosophiae doctor SIGLE: Ph.D.
DUREE MINIMALE: 6 trimestres CREDITS: 90

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études doctorales en mathématiques;
- b) être détenteur d'un diplôme de 2e cycle en mathématiques ou son équivalent;
- c) démontrer à un examen oral qu'il comprend les textes scientifiques français et anglais; il peut également être appelé à subir un examen écrit à la discrétion de l'examinateur;
- d) s'assurer, auprès du directeur du Département de mathématiques, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de mathématiques serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de mathématiques.

OBJECTIFS DU PROGRAMME

Former des chercheurs autonomes tout en assurant un approfondissement des connaissances générales du candidat en mathématiques.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Co programme comporte des activités qu'on peut regrouper sous les titres suivants: cours, examen général, recherche et thèse.

Cours (16 crédits)

Le programme comporte 4 cours choisis dans la liste suivante; ce choix tient compte de l'orientation de l'étudiant et de la disponibilité ou non de certains cours et il doit être approuvé par la Faculté.

MAT 4394 Recherche opérationnelle	MAT 4294	Probabilité	4 crédits
MAT 5194 Statistique appliquée 4 crédits MAT 5224 Théorie des catégories 4 crédits MAT 5234 Topologie algébrique 4 crédits MAT 5241 Mesure et intégration 4 crédits MAT 5274 Théorie de l'approximation 4 crédits MAT 5274 Théorie des automates et des langages formels I 4 crédits MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5345 Théorie des automates et des langages formels II 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5444 Analyse fonctionnelle II 4 crédits MAT 5445 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 4394	Recherche opérationnelle	4 crédits
MAT 5224 Théorie des catégories 4 crédits MAT 5234 Topologic algébrique 4 crédits MAT 5244 Mesure et intégration 4 crédits MAT 5274 Théorie de l'approximation 4 crédits MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5184	Organisation et recherche de l'information	4 crédits
MAT 5234 Topologic algébrique 4 crédits MAT 5244 Mesure et intégration 4 crédits MAT 5274 Théorie de l'approximation 4 crédits MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5194	Statistique appliquée	4 crédits
MAT 5244 Mesure et intégration 4 crédits MAT 5274 Théorie de l'approximation 4 crédits MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5224	Théorie des catégories	4 crédits
MAT 5274 Théorie de l'approximation 4 crédits MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5345 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5234	Topologic algébrique	4 crédits
MAT 5284 Théorie des automates et des langages formels I 4 crédits MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5244	Mesure et intégration	4 crédits
MAT 5294 Tests d'hypothèse 4 crédits MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5274	Théorie de l'approximation	4 crédits
MAT 5324 Algèbre non commutative 4 crédits MAT 5334 Topologie générale 4 crédits MAT 5344 Analyse fonctionnelle I 4 crédits MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5494 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5584 Méthodes non paramétriques 4 crédits	MAT 5284	Théorie des automates et des langages formels I	4 crédits
MAT 5334 Topologie générale	MAT 5294	Tests d'hypothèse	4 crédits
MAT 5344 Analyse fonctionnelle I	MAT 5324	Algèbre non commutative	4 crédits
MAT 5384 Théorie des automates et des langages formels II 4 crédits MAT 5394 Théorie de la décision 4 crédits MAT 5444 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5594 Méthodes non paramétriques 4 crédits	MAT 5334	Topologie générale	4 crédits
MAT 5394 Théorie de la décision 4 crédits MAT 5444 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5594 Méthodes non paramétriques 4 crédits	MAT 5344	Analyse fonctionnelle I	4 crédits
MAT 5444 Analyse fonctionnelle II 4 crédits MAT 5494 Séries chronologiques 4 crédits MAT 5584 Fiabilité des systèmes 4 crédits MAT 5594 Méthodes non paramétriques 4 crédits	MAT 5384	Théorie des automates et des langages formels II	4 crédits
MAT 5494 Séries chronologiques	MAT 5394	Théorie de la décision	4 crédits
MAT 5584 Fiabilité des systèmes	MAT 5444	Analyse fonctionnelle II	4 crédits
MAT 5594 Méthodes non paramétriques 4 crédits	MAT 5494	Séries chronologiques	4 crédits
The second secon	MAT 5584	Fiabilité des systèmes	
MAT 5684 Traitements des images et reconnaissance des formes 4 crédits	MAT 5594	Méthodes non paramétriques	4 crédits
	MAT 5684	Traitements des images et reconnaissance des formes	4 crédits

MAT F CO.4	Modèles de probabilités appliquées	4 crédits
MAI 3094	Modeles de probabilités appliques	1 crédits
MAT 5784	Analyse syntaxique	4 credits
MAT 5984	Simulation et modèles	4 Credits

EXAMEN GENERAL (12 crédits)

Au plus tard 1 an après sa lre inscription, la candidat au doctorat doit subir un examen général comportant une épreuve écrite ou une épreuve orale devant un jury d'au moins 3 membres. La nature de l'examen général et la composition du jury sont déterminées par la Faculté.

L'étudiant doit alors faire preuve d'un connaissance approfondie du domaine dans lequel il se spécialise et d'une connaissance adéquate dans les domaines connexes.

Cet examen est sanctionné, sur réussite, par l'attribution de 12 crédits.

RECHERCHE (37 crédits)

Les activités de recherche constituent un élément fondamental de ce programme et elles s'étalent sur toute sa durée. Elles sont sanctionnées par l'attribution en bloc de 37 crédits au dossier du candidat lorsqu'il a soutenu sa thèse et que celleci a été acceptée par le jury prévu aux règlements.

THESE (25 crédits)

La thèse est un document écrit dans lequel l'étudiant présente les résultats de ses travaux de recherche. L'acceptation de la thèse par le jury prévu aux règlements est sanctionnée par l'attribution de 25 crédits au dossier de l'étudiant.

DOMAINES DE RECHERCHE

Le programme comporte des activités de recherhce dans l'un ou l'autre des domaines suivants:

- Algèbre;
- Analyse, Analyse fonctionnelle;
- Probabilités et statistiques;
- Recherche opérationnelle;
- Simulation et fiabilité des systèmes.

PHYSIQUE

A) PROGRAMME DE 1ER CYCLE (92 CREDITS)

Cours obligatoires (73 crédits)

_		•	-					
TRIM	ESTRI	E D'AUTOMNE	TRI	MESTRE	E D'HIVER	TRI	ÆSTRI	E D'ETE
MAT	1943	Calcul diffé- rentiel et in-	MAT	1934	Algèbre li- néaire	PHY	2224	Physique statis- tique
		tégral I	MAT	1954	Calcul diffé-	PHY	2323	Théorie des ondes
MAT	2744	Calcul diffé-			rentiel et in-	PHY	2514	Mécanique quan-
		rentiel et in-			tégral II			tique I
		tégral III	PHY	1212	Thermodynamique	PHY	2933	Travaux pratiques
PHY	1114	Mécanique I	PHY	1404	Electricité et			IV
		Optique			magnétisme			
PHY	1482	Circuits élec-	PHY	1932	Travaux pratiques			
		triques			II			
PHY	1912	Travaux pra-	PHY	2224	Physique statis-			
		tiques I			tique			
PHY	2114	Mécanique II	PHY	2323	Théorie des ondes			
PHY	2353	Physique quan-	PHY	2514	Mécanique quanti-			
		tique			que I			
PHY	2843	Electronique	PHY	2933	Travaux pratiques			
PHY	2913	Travaux prati-			IV			
		ques III	PHY	3933	Travaux pratiques			4
PHY	3424	Théorie électro-			VI			

Cours à option (29 crédits dont un minimum de 19 parmi les cours suivants)

TRIMESTRE D'AUTOMNE

TRIMESTRE D'HIVER

MAT 1284 Programmation I CHM 1133 Chimie inorgani-

magnétique PHY 3513 Mécanique quantique II PHY 3913 Travaux pratiques V

PHY 2482 Astrophysique

que I

Ces cours seront offerts soit au trimestre d'automne, soit au trimestre d'hiver (voir note a).

PHY 3132 Mécanique III PHY 3303 Physique atomique et moléculaire PHY 3713 Physique du solide PHY 3813 Physique mathématique PHY 3473 Physique des plasmas PHY 3603 Physique nucléaire PHY 3663 Physique des particules élémentaires.

Notes

- a) Le Département ne peut s'engager à offrir un cours à option qui ne réunirait pas un nombre suffisant de candidats. Les étudiants ont intérêt à faire leur choix de cours à option au plus latd en fin de session 4, ceci permattant au Département de distribuer les cours à option de manière optimale par rapport aux trimestres d'automne ou d'hiver.
- b) Un seul cours MAT 1284 et CHM 1123 peut être comptabilisé à titre de cours à option. L'étudiant devra de plus s'inscrire au cours de son choix des sa lre session.
- c) L'étudiant peut s'inscrire à des cours hors programme de son choix avec l'approbation du secrétaire de la Faculté.

De plus, le Département de physique collabore à un programme offert par la Direction générale de la Foramtion des maîtres.

1. BACCALAUREAT - Option physique (physique pédagogie)

Cours obligatoires: (40 crédits)

MAT 1934 Algèbre linéaire

MAT 1943 Calcul différentiel et intégral I

MAT 1953 Calcul différentiel et intégral II

PHY 1114 Mécanique I

PHY 1212 Thermodynamique

PHY 1312 Optique

PHY 1404 Electricité et magnétisme

PHY 1482 Circuits électriques

PHY 1912 Travaux pratiques de physique I

PHY 1932 Travaux pratiques de physique II

PHY 2063 Didactique de la physique I PHY 2083 Didactique de la physique II

PHY 2343 Physique quantique

PHY 2913 Travaux pratiques de physique III

Cours à option: (au moins 20 crédits)

CHM 1133 Chimie inorganique I

MAT 1284 Programmation I

MAT 2744 Calcul différentiel et intégral III

PHY 2114 Mécanique II

PHY 2224 Physique statistique

PHY 2323 Théorie des ondes PHY 2482 Astrophysique

PHY 2514 Mécanique quantique I

PHY 2843 Electronique

PHY 2933 Travaux pratiques de physique IV

Le département de physique collabore également à un programme offert par le Département de philosophie de la Faculté des arts. Les étudiants inscrits à ce programme devront suivre un minimum de 30 crédits parmi les cours de la liste suivante:

TRIMESTRE D'HIVER

MAT 1934 Algèbre linéaire

PHY 1212 Thermodynamique

PHY 2323 Théorie des ondes

PHY 2482 Astrophysique

MAT 1954 Calcul différentiel et

PHY 1404 Electricité et magnétisme PHY 1932 Travaux pratiques II

intégral II

TRIMESTRE D'AUTOMNE

CHM 1133 Chimie inorganique I MAT 1943 Calcul différentiel et

intégral I

PHY 1114 Mécanique I PHY 1312 Optique

PHY 1482 Circuits électriques

PHY 1912 Travaux pratiques I

PHY 2353 Physique quantique

PHYSIQUE

Programmes des 2e et 3e cycles

PHYSIQUE DES HAUTES TEMPERATURES. Mesure de la température, densité électronique et composition du plasma, échanges thermiques entre des particules et un gaz chaud.

PHYSIQUE DE MATIERE CONDENSEE. Propriétés de transport, propriétés optiques et magnéto-optiques des semiconducteurs inorganiques et organiques. Ultrasons et phonons aux basses températures. Etudes des structures en couches par neutrons et rayons - X. Propriétés superconductrices des structures en couches.

PHYSIQUE THEORIQUE. Alliages quantiques, structure de bandes des alliages ternaires, modes plasmons dans les structures métal-isolant-semiconducteur, modes plasmons des liquides polaires et les structures en couches, interaction électron-phonon dans les solides quasi-unidimensionels, transitions de phase dans les systèmes mésomorphes. Capture des muons et des pions par des molécules simples (H2, NaCl). Auto ionisation dans les gaz rares.

B) PROGRAMME DE 2E CYCLE

TITRE: Maîtrise en physique

GRADE: Maître ès sciences SIGLE: M.Sc.
DUREE MINIMALE: 3 trimestres CREDITS: 45

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre jugé apte à entreprendre des études de 2e cycle universitaire;
- avoir obtenu un baccalauréat spécialisé en physique d'une université reconnue, ou tout autre diplôme jugé équivalent;
- c) s'être classé dans la lre moitié de sa classe avec une moyenne cumulative d'au moins 2.20, dans un système où la moyenne cumulative maximale est 4.00, ou avoir obtenu des résultats académiques jugés équivalents (par exemple 70%);
- d) s'assurer, auprès du directeur du Département de physique, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de physique serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de physique.

OBJECTIFS DU PROGRAMME

Ce programme avec accent sur la recherche permet à l'étudiant d'approfondir ses connaissances générales en physique, de commencer à se spécialiser dans un secteur de la physique et de d'initier à la recherche.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte 3 types d'activités qu'on peut regrouper sous les titres suivants: cours, recherche, mémoire.

Cours (13 crédits)

Cours obligatoires (10 crédits)

PHY 5001	Séminaire	l crédit
PHY 5203	Physique statistique	3 crédits
PHY 5523	Mécanique quantique I	3 crédits
PIN 5823	Méthodes de physique théorique	3 crédits

Cours à option (3 crédits)

L'étudiant doit s'inscrire à l'un des cours de la liste suivante, en tenant compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit être approuvé par la Faculté.

PHY	5143	Théorie de la diffusion	3 crédits
PHY	5183	Théorie des groupes	3 crédits
PHY	5323	Problème à N corps	3 crédits
PHY	5343	Physique atomique et moléculaire	3 crédits
PHY	5423	Electrodynamique classique	3 crédits
PHY	5483	Physique des plasmas	3 crédits
PHY	5533	Mécanique quantique II	3 crédits
PHY	5703	Physique du solide	3 crédits
PHY	5723	Théorie du solide	3 crédits
PHY	5753	Phénomènes de transport et propriétés optiques	
		des solides	3 crédits
PHY	5773	Propriétés des solides aux basses températures	3 crédits

RECHERCHE (22 crédits)

Les activités de recherche du candidat sont étalées sur toute la durée du programme; elles sont sanctionnées par l'attribution en bloc de 22 crédits à son dossier lorsque son mémoire a été accepté.

MEMOIRE (10 crédits)

Le mémoire est un document écrit dans lequel le candidat présente les résultats de ses travaux de recherche. Le mémoire est sanctionné par l'attribution de 10 crédits au dossier du candidat lorsqu'il est accepté par le jury prévu aux règlements.

DOMAINES DE RECHERCHE

- Physique des hautes températures;
- Physique de la matière condensée;
- Physique théorique.

C) PROGRAMME DE 3E CYCLE

TITRE: Doctorat en physique

GRADE: Philosophiae doctor SIGLE: Ph.D.

DUREE MINIMALE: 6 trimestres CREDITS: 90

CONDITIONS D'ADMISSION

Le candidat doit:

- a) Etre juge apte à entreprendre des études doctorales en physique;
- b) Etre détenteur d'un diplôme de 2e cycle en physique ou son équivalent;
- c) démontrer à un examen oral qu'il comprend les textes scientifiques français et anglais; il peut également être appelé à subir un examen écrit à la discrétion de l'examinateur;
- d) s'assurer, auprès du directeur du Département de physique, lorsqu'il formule sa demande d'admission, qu'au moins un professeur du Département de physique serait prêt à accepter de diriger ses travaux de recherche.

JURIDICTION

Faculté des sciences, Département de physique.

OBJECTIFS DU PROGRAMME

Former des chercheurs autonomes tout en assurant un approfondissement des connaissances générales du candidat en physique.

INSCRIPTION

Ce programme doit être poursuivi à temps complet.

ACTIVITES DU PROGRAMME

Ce programme comporte des activités qu'on peut regrouper sous les titres suivants: cours, examen général, recherche et thèse.

Cours (14 crédits)

Cours obligatoires (5 crédits)

	Séminaire	
PHY 5021	Séminaire	1 crédit
PHY 5533	Mécanique quantique II	3 crédits

Cours à option (9 crédits)

L'étudiant doit s'inscrire à 3 cours choisis dans la liste suivante, en tenant compte de son orientation et de la disponibilité ou non de certains cours; ce choix doit être approuvé par la Faculté.

PHY	5143	Théorie de la diffusion	3 crédits	
PHY	5183	Théorie des groupes	3 crédits	
PHY	5203	Physique statistique	3 crédits	
PHY	5323	Problème à N corps		
PHY	5343	Physique atomique et moléculaire	3 crédits	
PHY	5423	Electrodynamique classique		
PHY	5483	Physique des plasmas	3 crédits	
PHY	5523	Mécanique quantique I		
PHY	5703	Physique du solide	3 crédits	
PHY	5723	Théorie du solide		
PHY	5753	Phénomènes de transport et propriétés		
		optiques des solides	3 crédits	
PHY	5773	Propriétés des solides aux basses		
		températures	3 crédits	
PHY	5823	Méthodes de physique théorique		

EXAMEN GENERAL (3 crédits)

Au plus tard 1 an après sa lre inscription, le candidat au doctorat doit subir un examen général comportant une épreuve écrite ou une épreuve orale devant un jury d'au moins 3 membres. La nature de l'examen général et la composition du jury sont déterminées par la Faculté.

L'étudiant doit alors faire preuve d'une connaissance approfondie du domaine dans lequel il se spécialise et d'une connaissance adéquate dans les domaines connexes.

Cet examen est sanctionné, sur réussite, par l'attribution de 3 crédits au dossier de l'étudiant.

RECHERCHE (48 crédits)

Les activités de recherche du candidat sont étalées sur toute la durée du programme: elles sont sanctionnées par l'attribution en bloc de 48 crédits à son dossier lorsque sa thèse a été acceptée.

THESE (25 crédits)

La thèse est un document écrit dans lequel l'étudiant présente les résultats de ses travaux de recherche. L'acceptation de la thèse par le jury prévu aux règlements est sanctionnée par l'attribution de 25 crédits au dossier de l'étudiant.

DOMAINE DE RECHERCHE

- -Physique des hautes températures;
- -Physique de la matière condensée;
- -Physique théorique

La Faculté des sciences en collaboration avec la Faculté des sciences appliqueés offre un programme de Maîtrise en environnement.

PROGRAMME DE 2E CYCLE

TITRE: Maîtrise en environnement

GRADE: A déterminer SIGLE: A déterminer

DUREE MINIMALE: 4 trimestres CREDITS: 60

CONDITION D'ADMISSION

Est admissible, après examen de son dossier académique, tout candidat possédant un grade de ler cycle en sciences, en sciences appliquées ou tout autre diplôme jugé équivalent.

JURIDICTION

Comité de programme,

Faculté des sciences appliquées et Faculté des sciences.

OBJECTIFS DU PROGRAMME

Ce programme avec accent sur les cours (type C) permet aux candidats d'élargir leurs connaissances dans des domaines très différents tout en restant en relation directe avec les problèmes liés à l'environnement.

INSCRIPTION-

Ce programme nécessite l'inscription à temps complet durant 4 trimestres consécutifs (automne-hiver-été-automne). Il ne peut pas être suivi à temps partiel.

Cours du programme (36 crédits minimum)

Cours obligatoires (27 crédits)

00020 101	-64-1-10 (-, -1-1-10)	
	Ecologie	
BIO 2171	Travaux pratiques d'écologie	l crédit
BIO 5143	Biologie du milieu III	3 crédits
	Chimie du milieu	
GEO 2233	Télédétection I	3 crédits
353	Génie sanitaire	3 crédits
760	Modélisation et simulation	3 crédits
761	Séminaires	3 crédits
762	Droit de l'environnement	3 crédits
763	Gestian des déchets solides	3 crédits

Pour les candidats possédant un ou plusieurs des cours mentionnés ci-dessus, il faudra compléter les crédits requis par des cours à option proposés ci-après.

Cours à option (9 crédits)

Ces cours à option se répartissent en cours de nivelage et en cours de spécialisation.

Cours de nivelage (3 crédits minimum)

*BIO 3103	Biologie du milieu I	3 crédits
*BIO 3123	Biologie du milieu II	3 crédits
106	Calcul différentiel et intégral	3 crédits
206	Programmation	3 crédits
635	Chimie physique	3 crédits
650	Chimie analytique	3 crédits

^{*} Ces cours ne peuvent pas être choisis par les étudiants possédant un baccalauréat en biologie.

Cours de	spécialisation (3 crédits minimum)	
BIO 2322	Phycologie	2 crédits
BIO 2331	Phycologie (TP)	l crédit
BIO 2342	Mycologie	2 crédits
BIO 2351	Mycologie (TP)	1 crédit
BIO 3401	Taxonomie des plantes vasculaires I	l crédit
BIO 3412	Taxonomie des plantes vasculaires I (TP)	2 crédits
BIO 3622	Ichtyologie	2 crédits
BIO 3631	Ichtyologie (TP)	1 crédit
CHM 2223	Analyse instrumentale	3 crédits
CHM 3213	T.P. d'analyse instrumentale	3 crédits
CHM 3222	Analyse organique	2 crédits
CHM 3313	Chimie instrumentale	3 crédits
CHM 4423	Spectroscopie analytique	3 crédits
CHM 5016	Analyse instrumentale I	6 crédits
CHM 5226	Analyse instrumentale II	6 crédits
CHM 5913	Electrochimie	3 crédits
GEO 2333	Télédétection II	3 crédits
GEO 3153	Aménagement régional	3 crédits
358	Contrôle de la qualité des eaux	3 crédits
349	Hydrogéologie	3 crédits
363	Modèles probabilistes	3 crédits
660	Procédés de traitement des eaux	3 crédits
664	Microbiologie appliquée	3 credits
674	Traitement de la pollution de l'air	3 crédits

ESSAI

Le candidat effectue une recherche et rédige un essai dans lequel il fait état de son aptitude à traiter systématiquement d'un sujet pertinent au champ d'études du programme. L'évaluation de l'essai est faite par un jury d'au moins 2 membres nommés par la faculté et elle est sanctionnée, sur réussite, par l'attribution de 24 crédits au dossier de l'étudiant. La note attribuée à l'essai est prise en compte dans le calcul de la moyenne cumulative.

DESCRIPTION DES COURS

BIOLOGIE

Cours de ler cycle

BIO 1151 BIOMETRIE I (1-0) — Etude des différentes analyses statistiques appliquées à des problèmes biologiques, présentation des données, comparaison de groupes et comparaison de paires, corrélation, régression et analyse de variance. Démonstration d'analyses de problèmes biologiques typiques.

Professeur: JUILLET

BIO 1403 BOTANIQUE (3-0) — La cellule végétale. Les tissus méristématiques primaires et secondaires. Les tissus différenciés; les parenchymes, les tissus de protection, les tissus de soutien, les tissus conducteurs, les tissus secréteurs. Les organes; la racine, la tige, la feuille. La taxonomie et l'appareil reproducteur; mode de reproduction des thallophytes, des bryophytes, des ptéridophytes et des spermatophytes. — Auteurs recommandés: Weier et al., Botany, Esau Anatomy of seed plant; Deysson, Cours de botanique générale.

Professeur: GRENIER

BIO 1411 TRAVAUX PRATIQUES DE BOTANIQUE (0-3) — Etude des principaux groupes de plantes vasculaires à l'aide de matériel frais ou conservé, de spécimens d'herbier, de fossiles, de préparations microscopiques, etc...

Professeur: BEAUMONT

BIO 1503 INVERTEBRES I (3-0) — Vue d'ensemble du monde des invertébrés: structures, formes, fonctions, phylogénie, cycles évolutifs; attention particulière accordée aux spongiaires, coelentérés, plathelminthes, annélides. — Auteurs recommandés: Barnes, Invertebrate Zoology; Borradaile et al., The Invertebrata; Grasse et al., Précis de sciences biologiques, Zoologie, Invertébrés; Meglitsch, Invertebrate Zoology.

Professeur: SHARMA

BIO 1511 TRAVAUX PRATIQUES D'INVERTEBRES (0-3) — Examen et dissection de formes représentatives de la diversité des invertébrés, avec insistance sur les coelentérés, annélides, mollusques et échinodermes.

Professeur: SHARMA

BIO 1522 INVERTEBRES II (2-0) — Vue d'ensemble du monde des invertébrés: structures, formes, fonctions, phylogénie, cycles évolutifs; attention particulière accordée aux mollusques et échinodermes. — Auteurs recommandés: Barnes, Invertebrate Zoology; Borradaile et al., The Invertebrata; Grasse et al., Précis de sciences biologiques, Zoologie, Invertébrés; Meglitsch, Invertebrate Zoology.

Professeur: SHARMA

BIO 1604 VERTEBRES I (4-0) — Caractères généraux, classification, premiers développements embryonnaires, organogénèse et anatomie comparée des chordés: peau, squelette, muscles, systèmes nerveux, digestif, respiratoire, circulatoire, excréteur et reproducteur, organes des sens, cavités du corps. — Auteurs recommandés: Torrey, Morphogenesis of the Vertebrates; Huettner, Comparative Embryology of the Vertebrates; Pirlot, Morphologie évolutive des chordés; Giroud & Lelièvre, Eléments d'embryologie.

Professeur: N...

BIO 1612 TRAVAUX PRATIQUES DE VERTEBRES I (0-6) — Dissection de la grenouille, du Necturus, du requin, de la couleuvre, du pigeon, du cochon foetal et du chat. Etude pratique micro et macroscopique d'embryologie comparée de vertébrés. — Auteurs recommandés: Véronneau & Coiteux, La grenouille, dissection; Véronneau & Coiteux, Le cochon foetal, dissection; Véronneau, Notes polycopiées sur le requin, la couleuvre, le necturus, le pigeon et le chat.

Professeur: VERONNEAU

BIO 1703 PHYSIOLOGIE ANIMALE I (3-0) — Notions de base: rôles physiologiques de certains organites cellulaires; transport membranaire; homéostasie. Localisation description, fonctionnement et rôles des systèmes de contrôle nerveux et endocrinien. — Auteurs recommandés: Tuttle et Schottelius, Textbook of Physiology; A.J. vander, J.H. Sherman et D.S. Luciano, Human Physiology: The mechanisms of body function.

Professeur: VILLEMAIRE

BIO 1723 PHYSIOLOGIE ANIMALE II (3-0) — Les systèmes osseux, musculaire, circulatoire, respiratoire, digestif, excréteur et reproducteur. Localisation, description, fonctionnement, contrôle et rôles physiologiques de ces grands systèmes. — Auteurs recommandés: Tuttle et Schottelius, Textbook of Physiology; A.J. Vander, J.H. Sherman et D.S. Luciano, Human Physiology: The mechanisms of function.

Professeur: VILLEMAIRE

BIO 1802 BIOCHIMIE I (2-0) — Biochimie statique: étude des glucides, lipides, acides aminés, peptides, protéines, acides nucléiques, hormones, vitamines et enzymes. — Pour chaque classe, il y aura étude de la nomenclature, classification, propriétés physiques et chimiques. — Auteurs recommandés: Harper. Physiological Chemistry; White, Handler & Smith, Principles of Biochemistry.

Professeur: POIRIER

BIO 2062 HISTOLOGIE (2-0) — Description détaillée de la structure des divers tissus. Etude de l'organisation de ces tissus dans les différents organes chez les mammifères. — Auteur recommandé: Leason et Leason, Histologie. — Prérequis: BIO 1703 et BIO 1723.

Professeur: MATTON

BIO 2071 TRAVAUX PRATIQUES D'HISTOLOGIE (0-3) — Etude microscopique des tissus et des organes.

Professeur: MATTON

BIO 2123 MICROBIOLOGIE (3-0) — Notions générales sur les microbes: structure, métabolisme, physiologie. Nutrition, méthodes de culture, croissance et génétique. Microbiologie appliquée: industrielle, médicale et agricole. — Auteurs recommandés: Stanier & al., The Microbial World.

Professeur: DESROCHERS

BIO 2131 TRAVAUX PRATIQUES DE MICROBIOLOGIE (0-3) — Travaux pratiques sur les méthodes de culture et de coloration, sur les réactions enzymatiques et l'identification des micro-organismes. Application à la bactériologie du sol, de l'eau, des produits alimentaires ainsi qu'à la bactériologie médicale.

Professeur: DESROCHERS

BIO 2142 ECOLOGIE THEMATIQUE (2-0) — Présentation de différents thèmes d'actualité. Les populations humaines: évolution, dynamique et conséquences de la surpopulation. L'énergie: l'énergie dans la biosphère, l'énergie et l'homme, problèmes de l'environnement liés à l'exploitation des différentes sources d'énergie. L'agriculture: historique et caractéristiques de l'agriculture moderne. La pollution de l'air et la pollution de l'eau: vue d'ensemble.

Professeurs: GRIECO et al

BIO 2151 BIOMETRIE II (0-4) — Application d'analyses statistiques à des problèmes biologiques, problèmes s'appliquant à couvrir différentes épreuves statistiques. — Prérequis: BIO 1151

Professeur: JUILLET

BIO 2161 TRAVAUX PRATIQUES D'ECOLOGIE (0-3) — Application d'un échantillonnage usuel à la prise de données biologiques et abiotiques d'un territoire choisi. Analyse des données par l'étude des relations liant les organismes aux facteurs du milieu à l'aide des statistiques et de la cartographie. Préparation d'un rapport.

— Prérequis: BIO 2151.

Professeur: JUILLET

BIO 2162 ECOLOGIE (2-0) — Principes et concepts de base. Facteurs du milieu. Populations: caractéristiques, échantillonnage, dynamique, etc... Communautés: échantillonnage, relations biologiques, succession, etc... Systèmes écologiques terrestres, leur faune et leur flore. — Auteurs recommandés: Odum, Fundamentals of Ecology; Benton & Werner, Principles of Field Biology and Ecology; Bodenheimer, Précis d'écologie animale.

Professeur: JUILLET

BIO 2171 TRAVAUX PRATIQUES D'ECOLOGIE APPLIQUEE (0-3) — Etude en laboratoire ou sur le terrain d'un problème biologique où l'on met en évidence l'importance de quelques facteurs écologiques, biotiques et/ou abiotiques. Rédaction d'un rapport.

Professeur: JUILLET

BIO 2182 BIOGEOGRAPHIE VEGETALE (2-0) — La répartition géographique des espèces végétales et ses causes. Les facteurs du milieu et leur rôle dans la distribution et la vie des organismes. Les groupements végétaux. Les grandes formations végétales du globe, surtout celles de l'Amérique du Nord. — Auteurs recommandés: Lemee, Précis de biogéographie; Ozenda, Biogéographie végétale; Sanderson, The Continent we live on.

Professeur: LEGAULT

BIO 2191 TRAVAUX PRATIQUES DE BIOGEOGRAPHIE VEGETALE (0-3) — Cartes de distribution de différentes espèces de plantes de l'Amérique du Nord. Initiation à l'analyse pollinique.

Professeur: LEGAULT

BIO 2322 PHYCOLOGIE (2-0) — Etude des différents embranchements d'algues au point de vue de la morphologie comparée, du mode de reproduction, de la taxonomie, etc... — Auteurs recommandés: Abbayes & al., Botanique; Bourrelly, Les Algues d'eau douce. — Prérequis: BIO 1403.

Professeur: LEGAULT

BIO 2331 TRAVAUX PRATIQUES DE PHYCOLOGIE (0-3) — Récolte et observation de différents types d'algues. Etudes microscopiques des caractéristiques générales des grands groupes. — Auteurs recommandés: Palmer, Algae in water supplies; Prescott, How to Know the Fresh-Water Algae.

Professeur: LEGAULT

BIO 2342 MYCOLOGIE (2-0) — Etude des différentes classes de champignons au point de vue de la morphologie comparée, du mode de reproduction, de la taxonomie, etc... Les lichens. — Auteurs recommandés: Abbayes & al., Botanique; Alexopoulos, Introductory Mycology; Locquin, Les champignons; Smith, Cryptogamic Botany. — Prérequis: BIO 1403.

Professeur: LEGAULT

BIO 2351 TRAVAUX PRATIQUES DE MYCOLOGIE (0-3) — Récolte et observation de différents types de champignons et de lichens. Techniques de culture, d'isolation et d'inoculation de micro-organismes. Etudes des caractéristiques générales des différentes classes. — Auteurs recommandés: Alexopoulos & Beneke, Laboratory Manual for Introductory Mycology; Barnett, Illustrated Genera of Imperfect Fungi.

Professeur: LEGAULT

BIO 2502 PROTOZOOLOGIE (2-0) — Notions générales sur les protistes: morphologie, physiologie, nutrition, reproduction. Etude des différentes classes.

Professeur: DESROCHERS

BIO 2511 TRAVAUX PRATIQUES DE PROTOZOOLOGIE (0-3) — Examen de quelques représentants des différentes classes de protistes. Les protistes libres sont étudiés vivants et les protistes parasites d'après des préparations microscopiques. Etude de la biologie des organismes examinés. — Auteur recommandé: Jahn, How to Know the Protozoa.

Professeur: DESROCHERS

BIO 2542 ARTHROPODES (2-0) — Caractères distinctifs, ampleur et évolution des arthropodes connus comme étant les êtres prépondérants sur le globe terrestre. Etude de sarthropodes vermiformes (onychophores et myriapodes), leur morphologie externe, leur anatomie, leur reproduction, leurs moeurs et leur importance économique. Etude de la morphologie, de l'anatomie, de l'écologie et de la reproduction des crustacés inférieurs et supérieurs. Importance économique des crustacés. Caractères distinctifs des arachnides en général et un accent particulier sur l'étude des acariens et des araignées. Les insectes (hexapodes) ne sont pas traités dans ce cours. — Auteurs recommandés: R.D. Barnes, Invertebrate Zoology (W.B. Saunders Co.); Grasse et al., Précis de sciences biologiques, Zoologie, Tome I (Masson et Cie).

Professeur: SHARMA

BIO 2551 TRAVAUX PRATIQUES D'ARTHROPODES (0-3) — Etude de la morphologie externe et dissection de peripatus. Montage sur lames de différentes parties d'arthropodes. Etude de scolopendra et de spirobolus. Collection, préservation, coloration et montage d'un chilopode sur lame. Etude de la morphologie externe et dissection du homard. Etude des petits crustacés, des araignées et des acariens et leur montage permanent. — Auteurs recommandés: Beaumont et Cassier, Travaux pratiques de biologie animale (Dunod).

Professeur: SHARMA

BIO 2562 ENTOMOLOGIE I (2-0) — Caractères distinctifs des insectes, leur adaptation et leur évolution. Morphologie externe d'un insecte type. L'anatomie, la reproduction et l'ontogénèse incluant les cycles de vie. Méthodes pratiques de collection, de conservation et de montage des insectes. Etudes d'espèces d'importance économique du nord-est américain. Méthodes de lutte: législative, mécanique, chimique et biologique. — Auteurs recommandés: Ross, Textbook of Entomology; Sweetman, Principles of Biological Control.

Professeurs: SHARMA et JUILLET

BIO 2571 TRAVAUX PRATIQUES D'ENTOMOLOGIE I — Etude de la morphologie externe du criquet et du grillon domestique. Montage sur lame des pièces buccales, d'antennes, de pattes et des ailes. Dissection du criquet. Collection, coloration et montage permanente des insectes sur lames. Identification de principaux ordres et leurs familles. Auteurs recommandés: Beaumont et Cassier, Travaux pratiques de Biologie animale.

Professeurs: JUILLET et SHARMA

BIO 2703 PHYSIOLOGIE CELLULAIRE (3-0) — Techniques d'étude de la cellule. Propriétés physiques, biochimie, ultrastructure et rôle physiologique de chacun des constituants cellulaires: membranes, cytoplasme, mitochondrie, reticulum endoplasmique, complexe de Golgi, lysosomes, centrioles, enveloppe nucléaire, chromatine, nucléole, nucléoplasme. Perméabilité, mouvement amiborde, cytokinèse, synthèse protéique, différenciation. — Auteurs recommandés: DeRobertis, Nowinsky & Saez, Cell Biology — Prérequis: BIO 1703 et BIO 1802.

Professeurs: BEAUDOIN ET AL

BIO 2802 BIOCHIMIE II (2-0) — Etude de l'oxydoréduction et phosphorylation oxydative. Etude des métabolismes intermédiaires: glucides: glycolyse, glycogénèse gluconéogénèse; les lipides: lipolyse et lipogénèse. Cycle de l'urée. Calorimétrie: notions fondamentales. — Auteurs recommandés: Harper, Physiological Chemistry; White, Handler & Smith, Principles of Biochemistry. — Prérequis: BIO 1802.

Professeur: POIRIER

BIO 2812 TRAVAUX PRATIQUES DE BIOCHIMIE I (3-0) — Initiation à la calorimétrie, évaluation des glucides, lipides protides, vitamines et acides nucléiques. Détermination des activités enzymatique et hormonale.

Professeur: BEAUDOIN

BIO 2842 BIOCHIMIE III (2-0) — Métabolisme de l'hémoglobine des porphyrines et des pigments biliaires. Neurochimie. Métabolisme des acides aminés. Stéroïdes. Propriétés et rôle protéines. — Auteurs recommendés: Orten & Neuhaus, Biochemistry; Bell, Davidson, Scarborough, Texbook of Physiology and Biochemistry. — Prérequis: BIO 2802

Professeur: SAUCIER

BIO 2852 TRAVAUX PRATIQUES DE BIOCHIMIE II (0-3) — Déterminations de l'activité glycolytique de différents extraits cellulaires. Analyse d'activités enzymatiques sur matériel biologique. Expériences sur le métabolisme azoté.

Professeur: SAUCIER

BIO 3001 à BIO 3041 SEMINAIRES — Présentation des sujets biologiques par les étudiants; discussion et appréciation. — BIO 3001, Physiologie-biochimie; BIO 3011 Botanique; BIO 3021 Entomologie; BIO 3031 Microbiologie; BIO 3041 Zoologie.

Groupe de professeurs

BIO 3103 BIOLOGIE DU MILIEU I(3-0) — Cours desitné à présenter une vue d'ensemble du monde vivant. Notions générales d'écologie: écosystème et ses composantes, chaîne alimentaire, population, communauté, habitat, niche, succession et diversité. Description et diversité des êtres vivants: caractéristiques générales et mode de vie des principaux groupes d'organismes procaryotes et eucaryotes. Structure générale et type d'organisation, distribution et habitat, nutrition, reproduction, importance écologique et économique, utilisation par l'homme et classification générale des principaux groupes d'organismes: bactéries, cyanobactéries, algues, champignons, protozoaires, plantes et animaux.

Professeur: GRIECO

BIO 3122 IMMUNOLOGIE (2-0) — Nature de la maladie infectieuse et des systèmes de défense: protection, immunité acquise active et passive. La réaction immunitaire, les propriétés des antigènes, la structure et le mécanisme de production des anticorps.

Professeur: BECHARD

BIO 3123 BIOLOGIE DU MILIEU II (3-0) — Cours destiné à présenter les nitions de base en biologie concernant le fonctionnement des organismes vivants. Physiologie et biochimie des protistes, des plantes et des animaux. — La cellule: structure et fonction. Transformation de l'énergie: mécanisme biochimique de la photosynthèse et de la respiration. — Biologie des organismes et principales fonctions. Obtention et transformation de la nourriture, échange des gaz, transport interne, régulation des fluides corporels, contrôle hormonal et nerveux et comportement chez les différents groupes d'organismes. — Vue générale de l'hérédité. Nature du gène et son action. Evolution.

Professeur: GRIECO

BIO 3131 TRAVAUX PRATIQUES D'IMMUNOLOGIE (0-3) — Immunisation d'animaux, applications de la sérologie (agglutination, précipitation, fixation du complément) dans le sérotypage et les identifications médico-légales.

Professeur: BECHARD

BIO 3143 GENETIQUE (3-0) - Problèmes de l'hérédité. Identification du matériel génétique. Fonction autocatalytique du gène: duplication de l'ADN et des chromosomes. La méiose, la caryogamie et leurs conséquences: théorie chromosomique de l'hérédité, hérédité liée au sexe, liaison et recombinaison des gènes, cartes chromosomiques. Les altérations nucléaires et leurs conséquences: polysomie, polyplofdie, inversions, translocations, déficiences, importance des altérations. Echanges chromosomiques non méiotiques. Parasexualité: recombinaison mitotique, recombinaison, transformation et transduction bactériennes, recombinaison génétique chez les bactériophages, cartes génétiques de micro-organismes. Structure fine du gène: étude du gene lozenge chez la drosophile et d'un cistron chez le bactériophage T4. Fonction hétérocatalytique du gene: relations enzymes-genes, colinéarité gene-protéine. La mutagénèse: mutations génétiques spontanées et provoquées, mutations extrachromosomiques. Code génétique et synthèse des protéines: régulation du métabolisme cellulaire, régulation chez les micro-organismes, théorie de l'opéron, cas de Métazoaires. Notions de génétique des populations. - Auteur recommandé: Levine, Biology of the Gene. - Prérequis: BIO 1151

Professeur: ROBIN

BIO 3151 TRAVAUX PRATIQUES DE GENETIQUE (0-3) — Etude microscopique de la mitose, de la méiose et des chromosomes. Etablissement d'un caryotype humain. Croisements de génétique: souches de drosophile et d'Ascobolus stercorarius. Problèmes de génétique. Etablissement de cartes génétiques simples. Caractérisation chromatographiques de mutations. Etude de mutations chez Escherichia coli. Expériences de génétique microbienne utilisant des mutants ponctuels et des mutants de délétion chez les bactériophages: cartographie de la région rII chez T4.

Professeur: ROBIN

BIO 3163 GRANDS GROUPES BACTERIENS (3-0) — Taxonomie classique et numérique. Etude détaillée des groupes morphologiques et physiologiques bactériens et leur rêle dans la maladie, les aliments, l'eau, le sol et l'industrie. Prérequis: Bio 2123

Professeurs: BECHARD et DESROCHERS

BIO 3172 TRAVAUX PRATIQUES DE SYSTEMATIQUE MICROBIENNE (0-3) — Enrichissement, isolement et identification des groupes physiologiques de micro-organismes par des techniques spécifiques à la microbiologie appliquée.

Professeurs: DESROCHERS et BECHARD

BIO 3182 VIROLOGIE (2-0) — Les virus: structure et classification, méthodes de culture et de purification, méthodes de titration. Etude détaillée du cycle de réplication viral à l'exception de la réplication du matériel génétique: absorption ou injection, décapsidation, maturation, sortie. Etude détaillée de la réplication des désoxyribovirus (réplication du DNA viral). Etude détaillée de la réplication des ribovirus (réplication du RNA viral). Sérologie des virus. Interféron. Effet des agents physiques et chimiques sur les virions. La réponse réductive dans le cas des bactériophages: lysogénie. La réponse réductive dans le cas des virus animaux: transformation et cancer. — Auteur recommandé: Goodheart, An Introduction to Virology. — Prérequis: BIO 2123 et BIO 2802

Professeur: ROBIN

BIO 3191 TRAVAUX PRATIQUES DE VIROLOGIE (0-3) — Familiarisation de l'étudiant avec les techniques fondamentales de la virologie. Chaque étudiant (ou groupe d'étudiants) se voit remettre un virus inconnu (bactériophage) qu'il doit, par la suite, identifier. Pour ce, l'étudiant doit multiplier le virus (techniques de constitution des stocks), le titrer (méthodes des plages), le purifier (techniques d'ultracentrifugation), le caractériser biologiquement (étude du cycle de réplication), le caractériser physico-chimiquement (caractéristiques d'ultracentrifugation: constante de sédimentation et densité de flottaison, caractérisation de l'acide nucléique, estimation de la taille par ultrafiltration) et en déterminer la structure au microscope électronique. En outre, et parallèlement, l'étudiant est initié à la culture de tissus et à la manipulation des virus des animaux. On prévoit également une ou deux manipulations avec un virus des végétaux.

Professeur: ROBIN

BIO 3202 ECOLOGIE DES MAMMIFÈRES (2-0) — Introduction à l'étude scientifique des petits mammifères terrestres en se basant sur des travaux des plus récents. Les thèmes abordés sont: l'historique, les caractéristiques et la taxonomie; les techniques de trappage, marquage et autres; concept des populations animales; activité et mouvements; quelques caractères morphologiques et de croissance; métabolisme; le comportement animal; distribution et facteurs influençant la distribution; périodicité et cycles écologiques de la reproduction. — Prérequis: BIO 2162

Professeur: BERGERON

BIO 3211 TRAVAUX PRATIQUES D'ECOLOGIE DES MAMMIFERES (0-3) — Familiarisation de l'Étudiant à diverses techniques de trappage lors d'un stage d'automne en écologie. Etude au laboratoire des principes de morphologie externe, des techniques d'analyse de leur condition de reproduction, des façons d'âger les mammifères et des techniques d'analyses stomacales. Etude aussi des bases de taxidermie.

Professeur: BERGERON

BIO 3222 AMENAGEMENT DE LA FAUNE (2-0) — Le cours a pour but de présenter à l'étudiant une philosophie d'aménagement en lui soumettant des concepts faunistiques généraux. Nous abordons dans le cours: l'historique et les mécanismes d'aménagement; les propriétés des populations de gibier; le recensement des populations de gibier; techniques diverses en aménagement; le contrôle des populations par la chasse; le contrôle des populations par la nourriture, l'eau, le couvert végétal et les maladies; le contrôle, par les espèces prédatrices; mesure de la productivité; économique, éthique, politique et administration de la faune sauvage. Prérequis: BIO 2162

Professeur: BERGERON

BIO 3231 TRAVAUX PRATIQUES D'AMENAGEMENT DE LA FAUNE (0-3) — Ce laboratoire a deux buts: but théorique sert à montrer à l'étudiant quelques techniques statistiques dont il aura certainement besoin en aménagement. Les principales sont: analyse séquentielle, table de survie, treillis de triple capture, bio-assay, cédules de reproduction, application de la fonction logistique; but pratique - les techniques d'ordre pratique sont les suivantes: comment estimer l'âge des ongulés, diagnostic de la santé des chevreuils par la moelle des os; identification de bourgeons en vue d'analyses stomacales, comment estimer une population de perdrix, techniques de cartographie terrestre, comment estimer l'âge des lièvres, cartes bathymétriques, etc...

Professeur: BERGERON

BIO 3242 INITIATION A LA RECHERCHE ECOLOGIQUE I — Développement d'un projet de recherche original dans le domaine de la zoologie ou de la botanique. Elaboration d'un protocole expérimental mettant en cause l'hypothèse, la revue de littérature, les techniques d'étude et la cueillette des données. — Prérequis: BIO 2162

Groupe de professeurs

BIO 3252 INITIATION A LA RECHERCHE ECOLOGIQUE II — Interprétation de données écologiques, rédaction d'un rapport d'étude et présentation orale des principaux résultats lors d'un séminaire de recherche. — Prérequis: BIO 3242

Groupe de professeurs

BIO 3401 TAXONOMIE DES PLANTES VASCULAIRES I (1-0) — Principes de la taxonomie. Techniques de travail sur le terrain et en herbier. Etudes des plantes les plus communes au Québec. — Auteurs recommandés: Lawrence, An Introduction to Plant Taxonomy; Abbayes & al., Botanique; Deysson, Cours de botanique générale, Systématique. — Prérequis: BIO 1403.

Professeur: LEGAULT

BIO 3412 TRAVAUX PRATIQUES DE TAXONOMIE DES PLANTES VASCULAIRES I (0-6) — Travail sur le terrain durant les vacances de l'été précédent: récolte de plantes, préparation d'un herbier, etc. Travaux de laboratoire: usage des clefs d'identification. Identification des plantes les plus communes de la province de Québec.
— Auteurs recommandés: Marie-Victorin, Flore laurentienne; Hosie, Arbres indigènes du Canada.

Professeur: LEGAULT

BIO 3421 TAXONOMIE DES PLANTES VASCULAIRES II (1-0) — Historique de la classification des plantes. Les principes de la taxonomie végétale. Les systèmes de classification. Revue des plus importantes familles d'angiospermes, de gymnospermes et de filicinées du Québec. — Auteurs recommandés: Lawrence, Taxonomy of Vascular Plants; Abbayes & al., Botanique; Deysson, Cours de botanique générale, Systématique. — Prérequis: BIO 3401.

Professeur: LEGAULT

BIO 3431 TRAVAUX PRATIQUES DE TAXONOMIE DES PLANTES VASCULAIRES II (0-3) — Clefs d'identification. Identification des plantes de la région, etc. — Auteurs recommandés: Marie-Victorin, Flore laurentienne; Fernald, Gray's Manual of Botany.

Professeur: LEGAULT

BIO 3542 PATHOLOGIE DES INSECTES (2-0) — Etude des divers micro-organismes attaquant les insectes nuisibles, les protozoaires, les nématodes, les bactéries, les virus et les champignons entomogènes. Propagation en masse de ces micro-organismes sur divers milieux pour leur utilisation intensive dans les cultures pour combattre les insectes. Etat actuel de la dispersion artificielle des micro-organismes et évaluation de l'utilité pratique des divers micro-organismes. Considérations générales sur l'infection, l'infestation et l'épidémie chez les insectes. — Auteur recommandé: Steinhaus, Principles of Insect Pathology (McGraw-Hill).

Professeur: SHARMA

BIO 3563 ENTOMOLOGIE II (3-0) — Insectes d'importance économique en Amérique du Nord, particulièrement au Canada; insectes parasitaires; lutte contre les insectes nocifs, avec accent sur les méthodes biotiques, chimiques et intégrées. — Auteurs recommandés: Metcalf & al., Destructive and Useful Insects; Sweetman, Principles of biological Control; Bonnemison, Ennemis animaux des plantes cultivées et des forêts; Brown, Insect Control by Chemicals; De Bach, Biological Control of Insect Pests and Weeds. — Prérequis: BIO 2562.

Professeur: SHARMA

BIO 3571 TRAVAUX PRATIQUES D'ENTOMOLOGIE II (0-3) — Etude de la faune entomologique d'une communauté végétale choisie. Techniques d'échantillonnage requises. Etude comparée des modes de vie et des diètes, analyse écologique des principales populations. Introduction à la systématique.

Professeur: JUILLET

BIO 3591 TAXONOMIE DES INSECTES (0-3) — Travaux pratiques en systématique entomologique; familiarisation avec les principaux ordres et leurs familles diverses; identification de formes communes et typiques; formes immatures et adultes. — Prérequis: BIO 2562.

Professeur: JUILLET

BIO 3593 INITIATION A LA RECHERCHE ENTOMOLOGIQUE — Projet semestriel de recherches à saveur écologique, impliquant l'expérimentation avec différentes espèces d'insectes; recherches sur la nutrition, la densité, la lumière, la température, etc... Présentation d'un rapport étayé d'une bibliographie. — Corequis: BIO 3563.

Professeur: JUILLET

BIO 3602 EVOLUTION DES VERTEBRES (2-0) — Panorama de l'évolution des vertébrés: poissons, amphibiens, reptiles, oiseaux et mammifères (y compris l'homme), compte tenu de la géologie historique, de la paléontologie et des processus de l'évolution. — Prérequis: BIO 1604

Professeurs: VERONNEAU ET AL

BIO 3613 VERTEBRES II (3-0) — Anatomie, morphologie, physiologie et écologie des principaux groupes d'amphibiens, de reptiles et d'oiseaux actuels, compte tenu de leur répartition géographique générale et des principaux types représentés dans la faune locale. Notions du comportement des oiseaux; recommaissance/identification par le chant; quelques techniques de trappage et de montage... Initiation à la recherche bibliographique, rédaction et présentation de rapports sur divers aspects de l'étude des Vertébrés. — Prérequis: BIO 1604.

Professours: VERONNEAU et BERGERON

BIO 3622 ICHTYOLOGIE (2-0) — Eléments d'anatomie, de morphologie, de physiologie et d'écologie de grands groupes de poissons. Principes de pisciculture et d'aménagement de territoires de pêche. — Prérequis: BIO 1604.

Professeur: N...

BIO 3631 TRAVAUX PRATIQUES D'ICHTYOLOGIE (0-3) — Identification des principales espèces de poissons d'eau douce du Québec.

Professeur: DESROCHERS

BIO 3701 INITIATION A LA RECHERCHE PHYSIOLOGIQUE I (1-0) — Revue de la littérature sur un problème original de recherche en physiologie et élaboration d'un protocole expérimental. — Prérequis: BIO 3873 et BIO 2703

Professeur: MATTON

BIO 3702 PHYSIOLOGIE ANIMALE III (2-0) — 1. Mécanisme de la contraction musculaire et de la transmission synaptique. — 2. La fibre nerveuse: ses propriétés et le contrôle des fonctions neuro-végétatives. — 3. Les mécanismes de la sécrétion: discussion des diverses étapes du cheminement intracellulaire des sécrétions exocrinés. — 4. Biochimie du gaz respiratoire et équilibre acide-base. — 5. Les "releasing factors". — Prérequis: BIO 1703, 1723 et 2842.

Groupe de professeurs

BIO 3711 ÍNITIATION A LA RECHERCHE PHYSIOLOGIQUE II (0-3) — Réalisation pratique du protocole expérimental proposé.

Groupe de professeurs

BIO 3712 TRÁVAUX PRATIQUES DE PHYSIOLOGIE ANIMALE (0-3) — Etude des propriétés nerveuses, musculaires, cardio-vasculaires et respiratoires à l'aide d'appareils enregistreurs du type "Physiographe". — Prérequis: BIO 1703 et BIO 1723.

Professeur: VILLEMAIRE

BIO 3722 BIOCHIMIE DE LA NUTRITION (2-0) — Exigences nutritionnelles. Valeur biologique et chimique des aliments. Besoins nutritifs et énergétiques. Standards nutritionnels. Besoins spécifiques, vitamines, minéraux. — Auteurs recommandés: Guthrie, Introductory Nutrition; Tre-Molieres, Les bases de l'alimentation. — Prérequis: BIO 2802

Professeur: SAUCIER

BIO 3732 INITIATION A LA RECHERCHE PHYSIOLOGIQUE III (0-3) — Rédaction d'un mémoire sur la revue de la littérature et sur les résultats obtenus.

Groupe de professeurs

BIO 3742 PHYSIOLOGIE MICROBIENNE (2-0) — Nutrition et croissance des cultures bactériennes, la composition chimique des bactéries, les exo-enzymes et le catabolisme, le transport des sucres et des acides aminés. Les contrôles enzymatiques et les réactions de synthèse. — Prérequis: BIO 2123 et 2802.

Professeur: BECHARD

BIO 3752 TRAVAUX PRATIQUES DE PHYSIOLOGIE MICROBIENNE (0-3) — Etude du transport et du métabolisme microbien par utilisation de mutants. Méthodes chromatographiques, spectrophotométriques, enzymatiques et radio-actives.

Professeur: BECHARD

BIO 3763 PHYSIOLOGIE VEGATALE I (3-0) — Relations hydriques, absorption, transport, émission de l'eau. Nutrition minérale. Rôle du sol. Nutrition carbonée (photosynthèse): phase lumineuse, phase obscure. Translocation des sucres. Croissance et développement. Hormones de croissance, géotropisme, phototropisme, applications. Physiologie de la floraison. Photopériodisme. Vernalisation. Germination. Dormance. Mouvement des plantes. — Auteurs recommandés: Salisbury & Ross, Plant Physiology; Dévlin, Plant Physiology; Binet et Brunel, Physiologie végétale. — Prérequis: BIO 1403 et BIO 1802.

Professeur: GRENIER

BIO 3772 TRAVAUX PRATIQUES DE PHYSIOLOGIE VEGETALE (0-3) — Perméabilité cellulaire. Osmose. Imbibition. Nutrition minérale. Absorption et transpiration. Photosynthèse. Respiration. Circulation de la sève élaborée. Régulation de la croissance. Physiologie de la germination et des dormances. Photopériodisme. Herbicides sélectifs.

Professeur: BEAUMONT

BIO 3782 PHYSIOLOGIE DES INSECTES (2-0) — Etude de quelques fonctions: respiration, digestion, nutrition, système circulatoire, excrétion, reproduction...
— Auteur recommandé: Wigglesworth, Physiologie des insectes.

Professeur: BEAUDOIN

BIO 3792 PHYSIOLOGIE VEGETALE II (2-0) — Interactions ioniques en nutrition minérale. Photorespiration. Biosynthèse des hormones de croissance. Juvénilité. Sénescence et abscission. Physiologie de la formation, de la croissance et du mûrissement des fruits. Rôles de l'éthylène. Particularités de la vernalisation. Mécanismes d'action des herbicides sélectifs. — Prérequis: BIO 3763.

Professeurs: BEAUMONT ET GRENIER

BIO 3802 BIOCHIMIE CLINIQUE (2-0) — Aperçu général sur la marche d'un laboratoire de biochimie d'un hôpital. Epreuves fonctionnelles d'organes. Endocrinologie et enzymologie cliniques. Fonctions homéostatiques du sang. Composition des humeurs: sang, urine, L.C.R., liquide d'épanchement. Interprétation des analyses. Ces cours sont donnés en collaboration avec des biochimistes d'hôpitaux. — Prérequis: BIO 1703, 1723, 2842 et 3822.

Professeur: SAUCIER

BIO 3811 TRAVAUX PRATIQUES DE BIOCHIMIE CLINIQUE (0-3) — Dosage des principales substances analysées dans les laboratoires de biochimie d'hôpitaux. Epreuves fonctionnelles du foie, du rein et autres organes. Détermination de l'équilibre acidobasique du sang. Electrolytes. Dosage radio-immunologique de T3, T4, cortisone et stéroldes. Un stage d'une semaine dans un laboratoire de biochimie d'un hôpital. Ces travaux pratiques sont donnés en collaboration avec des biochimistes d'hôpitaux.

Professeur; SAUCIER

BIO 3822 ENDOCRINOLOGIE I (2-0) — Système endocrinien: chimie, biosynthèse, métabolisme, rôles physiologiques et mécanismes d'action des hormones. — Auteur recommandé: Turner, General Endocrinology. — Prérequis: BIO 1723 et BIO 1802.

Professeur: DUNNIGAN

BIO 3873 TECHNIQUES BIOCHIMIQUES (1-3) — Expériences décrivant et utilisant les techniques biochimiques suivantes: titrimétrie, fluorimétrie, séparations des constituants cellulaires (noyaux, mitochondries, microsomes), séparation des sucres, protéines par chromatographie sur couche mince de silice, de dextrans, par tamis moléculaire et échangeurs d'ions sur colonne. Electrophorèse sur gel polyacrylamide. Identification de lipides par chromatographie en phase gazeuse. Absorption atomique. — Prérequis: BIO 2802 et BIO 2852.

Groupe de professeurs

BIO 3911 TECHNIQUES CHIRURGICALES (0-3) — Initiation à l'anesthésie, aux techniques chirurgicales des petits et des gros animaux. — Prérequis: BIO 1612.

Profésseur: COUTURE

SCI 0103 DEVELOPPEMENT DE L'ESPRIT SCIENTIFIQUE — Le cours se propose d'apprendre aux étudiants-maîtres à penser et à travailler scientifiquement, à se poser des questions sur des phénomènes naturels qui les entourent (environnement) et ensuite y répondre. Objectifs, historique et méthodes des sciences à l'élémentaire. A l'intérieur d'activités concrètes de sciences naturelles, on tente de faire une analyse systématique des démarches intellectuelles simples en sciences: observation, mesure, classification, communication, inférence. Certaines notions opérationnelles sont, également au programme: force, masse, température.

SCI 0203 ORGANISATION D'UN LABORATOIRE DE SCIENCES — Le cours se propose de montrer aux étudiants-maîtres comment organiser une classe-laboratoire en tirant profit du milieu. Les animaux en classe: espèces, soins, utilité en rapport avec le programme-cadre et les objectifs des sciences à l'élémentaire. Les activités scientifiques à faire avec les enfants selon les saisons. Récoltes de matériel vivant. Techniques de conservation, élevage: plantes, vertébrés et invertébrés. Prérequis: SCI 0103

SCI 0303 ETUDE DES DEMARCHES INTELLECTUELLES SCIENTIFIQUES — Il s'agit de montrer aux étudiants-maîtres comment réaliser une expérience scientifique, de mettre en évidence les démarches intellectuelles utilisées au cours de ces activités. On aborde la prédiction, le contrôle des variables, l'interprétation des données, la création de modèles et l'expérimentation. Prérequis: SCI 0103 et SCI 0203

Cours des 2e et 3e cycles

BIO 5001 à 5021 et 5041 à 5061 SEMINAIRES DE RECHERCHES I à VI — L'étudiant en plus de participer aux séminaires de chacum des autres membres de son groupe, est tenu de présenter un séminaire par année, jusqu'à ce qu'il ait obtenu l'autorisation de rédiger son mémoire ou sa thèse. Un séminaire au moins doit porter sur la recherche respective de chaque candidat; les autres sujets seront déterminés en accord avec le directeur de recherche de chaque candidat et les responsables des séminaires.

Professeurs: BEAUDOIN et DESROCHERS

BIO 5031 NOMENCLATURE BOTANIQUE — Règles de la nomenclature botanique. Le code international. — Auteur recommandé: Lanjouw, International Code of Botanical Nomenclature.

Professeur: LEGAULT

BIO 5062 DIFFERENCIATION CELLULAIRE — Présentation des principales connaissances sur la différenciation cellulaire: 1. description des étapes de la différenciation de certains types cellulaires: cellule musculaire, cellule nerveuse, chondrocyte, etc.; 2. rôle du noyau dans la différenciation cellulaire: a) activation sélective du génome, b) rôles des divers constituants du noyau: ADN, protéines acides, histoines, c) interactions nucléocytoplasmiques; 3. les caractéristiques de la différenciation cellulaire: stabilité, réversibilité, processus multiphasique, rôle des facteurs exogènes d'induction, rôle de la replication de l'ADN; 4. étude de certains modèles récents de la différenciation cellulaire, en particulier du modèle de Tsaney et Sendov.

Professeur: MATTON

BIO 5143 BIOLOGIE DU MILIEU III (3-0) — Etude de différents thèmes d'actualité. Surpopulation: son évolution, sa dynamique, ses conséquences. Energie: rôle et dynamique dans la biosphère, la crise, nos ressources, nos réserves, les nouvelles sources d'énergie. Effet sur l'environnement de l'exploitation des principaux types d'énergie. Nutrition et agriculture: le problème de la faim, l'agriculture moderne, ses caractéristiques et ses implications dans divers pays. Sources nouvelles de nourriture.

Professeur: GRIECO

BIO 5162 ECOLOGIE DES INSECTES — Principaux facteurs du milieu. Coaction des populations. Etude des propriétés intrinsèques de croissance et extrinsèques de résistance. Principales méthodes d'échantillonnage. Tables de survie. — Prérequis: BIO 2162 et BIO 2562.

Professeur: JUILLET

BIO 5182 ECOLOGIE MICROBIENNE — Rôle des micro-organismes en nature et dans la société humaine. Le milieu microbien. Ecologie de la cellule microbienne. Moyens de dispersion des microbes. Ecologie des populations. Les écosystèmes microbiens. Interaction entre les micro-organismes et les macro-organismes. Les mocrobes en macroécologie.

Professeur: DESROCHERS

BIO 5202 ECOLOGIE DES VERTEBRES — Lectures dirigées dans le domaine de l'écologie des Oiseaux et des Mammifères. L'accent est donné en fonction de la spécialisation de l'étudiant. Nous étudions les cycles écologiques, la dynamique de populations, le métabolisme, la reproduction et le comportement des Vertébrés en certaines situations bien particulières et dans des habitats également distincts.

Professeur: BERGERON

BIO 5411 LES PTERIDOPHYTES — Quinze séances de travaux pratiques. Pour chaque famille, étude du sporophyte: racines, tige, feuilles, appareil sporogène. Caractères distinctifs des genres et espèces que l'on rencontre au Québec.

Professeur: LEGAULT

BIO 5421 LES GRAMINEES — Caractéristiques des plantes de cette famille. Classification traditionnelle et classification naturelle des sous-familles et tribus. Dissection et étude de l'inflorescence et de l'épillet de quelques graminées typiques du Québec (lorsque c'est possible), choisies de façon à couvrir toutes les treize tribus. Exercices d'identification des principales graminées québécoises. Quinze séances de travaux pratiques.

Professeur: LEGAULT

BIO 5431 LES CYPERACEES — Caractéristiques des plantes de cette famille. Dissection et étude de l'inflorescence et de l'épillet de quelques cypéracées typiques du Québec (lorsque c'est possible), choisies de façon à couvrir les principaux genres. Exercices d'identification des principales cypéracées du Québec. Quinze séances de travaux pratiques.

Professeur: LEGAULT

BIO 5441 LES COMPOSEES — Caractéristiques générales des plantes de cette famille. Dissection et étude de l'inflorescence de composées choisies de façon à couvrir toutes les tribus et les principaux genres présents au Québec. Attention particulière apportée aux caractéristiques différentielles. Exercice d'identification des principales composées du Québec. Quinze séances de travaux pratiques.

Professeur: LEGAULT

BIO 5522 LES COLEOPTERES — Biologie, écologie, taxonomie et importance économique des principales familles de coléoptères du nord-est américain. Etude des espèces nuisibles et des espèces bénéfiques.

Professeur: JUILLET

BIO 5542 LES HYMENOPTERES — Biologie, écologie, taxonomie et importance économique des principales familles d'hyménoptères, phytophages et entomophages.

Professeur: JUILLET

BIO 5562 LES HOMOPTERES — Biologie, écologie et taxonomie des homoptères, leur importance économique, transmission de virus par ces insectes et les principales méthodes de lutte.

Professeur: SHARMA

BIO 5582 SYSTEMATIQUE ZOOLOGIQUE — Bref historique de la systématique zoologique, plasticité et différenciation spécifique des formes animales. Systématique et nomenclature, catalogue d'un monde animal dynamique et changeant.

Professeur: O'NEIL

BIO 5602 LES RONGEURS — Lectures dirigées dans le domaine de la biologie des rongeurs. Le cours fait ressortir les principes ostéologiques et morphologiques propres aux rongeurs. Les sous-ordres Sciuromorphe, Myomorphe et Hystricomorphe, ainsi que leurs familles respectives, sont étudiés dans la même perspective. Une attention toute particulière est donnée à la dentition, à la présence du diastème et aux os crâniens. Nous étudions la distribution mondiale des rongeurs, leur importance économique et les moyens de les contrôler.

Professeur: BERGERON

BIO 5702 PHYSIOLOGIE DE LA REPRODUCTION — Etude de la physiologie et de l'endocrinologie de la reproduction, surtout chez les mammifères. Différenciation des gonades et du sexe. La spermatogénèse et son contrôle, structure de l'ovaire; mécanisme de contrôle du développement folliculaire, de l'ovulation et de la formation du corps jaume. Transport des gamètes, fécondation et implantation. Discussion du rôle de l'hypophyse et de l'hypothalamus sur les mécanismes de reproduction. — Auteurs recommandés: Van Tienhoven, Reproductive Physiology of the Vertebrates; Greep, Handbook of Physiology (Section 7, Volume II).

Professeur: MATTON

BIO 5711 LES HORMONES GASTRO-INTESTINALES ET LES ENZYMES DU PANCREAS EXOCRINE — Les hormones gastro-intestinales. Chimie, synthèse et catabolisme; principales fonctions physiologiques. Les enzymes du pancréas exocrine. Chimie, propriétés enzymatiques, rôle physiologique.

Professeur: DUNNIGAN

BIO 5721 ESTOMAC: CONTROLE DE LA SECRETION ACIDE, PEPSINE ET MUCUS — Mécanisme de la sécrétion gastrique: effet des hormones, de l'histamine et des agents cholinergiques, sur les divers paramètres de la sécrétion gastrique.

Professeur: DUNNIGAN

BIO 5731 ESTOMAC: INHIBITION DE LA SECRETION ACIDE, PEPSINE ET MUCUS — Inhibition du type physiologique due à des facteurs libérés par l'estomac (la gastrone) et l'intestin (la sécrétine, la cholécystokinine-pancréozymine et le G.I.P.). Inhibition du type pharmacologique par les anticholinergiques et autres drogues.

Professeur: MORISSET

BIO 5741 LE PANCREAS EXOCRINE ET LES GLANDES SALIVAIRES — Sécrétion in vivo et in vitro des enzymes et électrolytes. Stimulation cholinergique, hormonale. Etude sur la synthèse des enzymes.

Professeur: MORISSET

BIO 5751 LE PANCREAS EXOCRINE: ADAPTATION ET REGIME ALIMENTAIRE — L'adaptation chez différentes espèces. Explication du phénomène par différentes hypothèses. Discussion de ces hypothèses.

Professeur: MORISSET

BIO 5762 PHYSIOLOGIE VEGETALE III — Aspects récents de la photomorphogénèse, phénomènes physiologiques liés au phytochrome. Les interactions entre le phytochrome et les hormones de croissance, la régulation des enzymes, la biosynthèse des pigments et la différenciation cellulaire.

Professeur: GRENIER

BIO 5772 PHYSIOLOGIE VEGETALE IV — Aspects particuliers du métabolisme de la cellule végétale. Action des s-triazines sur la biosynthèse des protéines et des glucides. Métabolisme des lipides dans les tissus végétaux. Revue des publications récentes du rôle de l'AMP cyclique sur la régulation hormonale.

Professeur: BEAUMONT

BIO 5803 RADIOBIOLOGIE — L'atome et son noyau; atome, isotope, isobase, isomère. Les particules fondamentales; électron, positon, méson, neutron, neutrino, pion, hypéron. Les propriétés des substances radioactives; désintégrations alpha et bêta, rayonnements gamma et X, conversion interne, photon de freinage, unité radioactive, période biologique, période effective. Les interactions des radiations ionisantes avec la matière; collisions élastiques, inélastiques, notion de parcours, ionisation spécifique, effet photo-électrique, effet Compton, effet de matérialisation. Les principes de détection des ionisations. Notions d'énergie du rayonnement, de décroissance radioactive et de demi-vie des radioéléments. Calculs. Les principes de base de la scintillation en milieu liquide: solvants, fluors, bruit de fonds et quenching. Le spectromètre: détection des photons amplification et discrimination des signaux.

Méthodes de standardisation des comptages: préparation de courbes de standardisation externe à simple et à double isotope. Comptages d'échantillons. Préparation d'échantillons et mesures. Evaluation de pool par dilution isotopique.

Professeurs: BEAUDOIN ET BEAUMONT

BIO 5822 BIOCHIMIE DES STEROIDES — Biochimie et physiologie des principaux composés stéroliques naturels et de synthèses. Nous étudierons en particulier le cholestérol, les saponiens, les glucoalcaloides, les dérivés prégnanes, les glycosides cardiaques, etc. — Auteur recommandé: Heftmann, E., Steroid Biochemistry, Académic Press.

Professeur: SAUCIER

BIO 5831 MECANISME D'ACTION HORMONALE — Présentation des concepts modernes des mécanismes d'action des hormones, en particulier la notion de médiateurs locaux de l'action hormonale (histamine, 3', 5' AMP cyclique, sérotonine, etc.): a) revue et analyse critique de la documentation récente portant sur: le rôle biochimique de l'AMP cyclique dans l'activation de la phosphorylase; la notion de second messager dans la stimulation hormonale; méditations hormonales obtenues par l'AMP cyclique; action hormonale sur l'adényl cyclase; participation des prostaglandines, des inhibiteurs de la 3', 5' AMP diestérase; b) méthodologie des techniques employées: utilisation des inhibiteurs, détermination de l'adényl cyclase, prostaglandine synthétase, etc.

Professeur: DUNNIGAN

BIO 5842 BIOCHIMIE MICROBIENNE — Etude de la biochimie des dégradations microbiennes de composés synthétiques et naturels dans le sol et dans l'eau.

Professeur: BECHARD

BIO 5861 LES MEMBRANES BIOLOGIQUES — Aspects de la membrane en microscopie électronique. Etude des divers constitutants membranaires: lipides, protéines, polysaccharides, etc. Revue des divers modèles de membranes et discussion. Propriétés physico-chimique des membranes plasmatiques et membranes artificielles. Contrôle du métabolisme des constituants membranaires. Enzymes membranaires. Interactions hormone-membrane. Propriétés de suface des cellules.

Professeur: BEAUDOIN

· CHIMIE

Cours de ler cycle

CHM 1000 STAGE T-1 — Premier stage pratique pour les étudiants du régime coopératif au Département de chimie.

CHM 1133 CHIMIE INORGANIQUE I (4-0-5) — Radioactivité et réactions nucléaires. Structure électronique des éléments des groupes principaux. Corrélation entre structure et prorpiétés. Etude des structures, prorpiétés et réactions des composés inorganiques en fonction des principes fondamentaux des liaisons chimiques. Introduction à la chimie des métaux de transition. — Auteurs recommandés: Cotton et Wilkinson (a comprehensive text), Advanced Inorganic Chemistry (Interscience Pub.); Michel et Bernard, Chimie minérale (Masson et Cie); Philips et Williams, Inorganic Chemistry II (Oxford University Press).

CHM 1203 METHODES QUANTITATIVES DE LA CHIMIE T.P.(0-8-2) — Dans ce laboratoire intégré de méthodes modernes de mesures, on fait ressortir l'interpénétration de techniques fondamentales. Les séances de travaux pratiques et d'exercices s'adressent entre autres à la quantification de masse, de volume, de température, de potentiel chimique et d'intensité dela lumière et à l'interprétation de ces données expérimentales pour des fins analytiques. — Auteurs recommandés: Harris et Kratochvil:

"Chemical Separation & Measurements, Background and Procedures for Modern Analysis" (Saunders) notes du professeur: Shoemaker, Garland et Steinfeld, "Experiments in Physical Chemistry" (McGraw-Hill).

CHM 1213 CHIMIE ANALYTIQUE (3-1-5) — Eau, solutés et équilibres chimiques. Oxydoréduction, potentiométrie et applications. Réactions acides-bases en milieu aqueux et non-aqueux; applications. Précipitation et applications. Complexométrie et applications. — Auteurs recommandés: Peters, Hayes et Hieftje, Chemical Separations and Measurements, Theory and Practice of Analytical Chemistry. (Saunders).

CHM 1423 CHIMIE ORGANIQUE I (3-1-5)— Les liaisons dans les molécules organiques. Classes de composés et réactions caractéristiques. Groupements fonctionnels. Isomérie. Conformation et stéréochimie. Induction, résonnance, tautométrie, caractère aromatique. Acidité et basicité. Le programme correspond à la matière des chapitres 1,2,3,4,5,6 et 8 du livre de référence: Hendrickson, Cram et Hammond, Organic Chemistry (McGraw-Hill).

CHM 1432 CHIMIE ORGANIQUE Î (2-0-4) — Structure, identification et nomenclature des substances organiques. La liaison dans les molécules organiques. Les orbitales atomiques. Hybridation des orbitales de liaison. Etude des fonctions principales de la chimie organique. Effets électroniques. Résonance. Isométrie. Destiné aux étudiants en biologie et en sciences appliquées. Des séances facultatives d'exercices sont prévues. — Auteurs recommandés: J.D. Roberts et M. Caserio, Chimie organique moderne (Ediscience).

CHM 1443 CHIMIE ORGANIQUE II (3-0-6) — Réactions en chimie organique. Introduction aux mécanismes de substitution, addition et élimination. Conformation des molécules. Destiné aux étudiants en biologie. — Auteur recommandé: J.D.Roberts et M. Caserio, Chimie organique moderne (Ediscience).

CHM 1451 TRAVAUX PRATIQUES DE CHIMIE ORGANIQUE (0-4-1) — Introduction aux techniques de la chimie organique: cristallisation, distillation, sublimation. Expérience illustrant certaines propriétés des principales fonctions organiques. — Auteur recommandé: notes du professeur.

CHM 1453 CHIMIE ORGANIQUE II (3-2-4) — Réactions en chimie organique. Introduction aux mécanismes de substitution, addition et élimination. Conformation des molécules. Applications de la chimie organique. Ces cours comportent des séances de laboratoires aux 2 semaines. Destiné aux étudiants en sciences appliquées. — Auteurs recommandés: J.D. Roberts et M. Caserio, Chimie organique moderne (Ediscience).

CHM 1523 TECHNIQUES DE CHIMIE ORGANIQUE ET INORGANIQUE T.P. (0-7-2). Techniques de purifications et d'analyse. Techniques de synthèse. Extraction. Isolement de produits naturels. Chromatographie. Analyse spectrale élémentaire.

CHM 1714 CHIMIE PHYSIQUE I (4-2-6) — Propriétés des gaz parfaits et réels. Chaleur et capacité calorifique. Premier principe de thermodynamique. Second et troisième principe de thermodynamique, entropie. Théorie cinétique des gaz. Distribution de Boltzmann. Propriétés de transport des gaz. Thermodynamique statistique. Fonctions de répartition. Application aux gaz parfaits. Equilibre chimique. Thermochimie et réactions chimiques. Vitesse de réaction. Ordre et mécanisme de réaction. Théorie des collisions. Théorie des états de transition. Catalyse. — Auteur recommandé: Moore, Physical chemistry, 4e éd (Prentice Hall).

CHM 1783 CHIMIE PHYSIQUE (3-3-3) — Thermodynamique chimique. Réactions chimiques: Thermodynamique et cinétique des réactions. Catalyse. Solutions. Equilibre de phases. Electrochimie. Ce cours est accompagné de travaux pratiques et de séances d'exercices hebdomadaires. Il est destiné aux étudiants en sciences appliquées.

CHM 2000 STAGE T-2 — Deuxième stage pratique pour les étudiants du régime coopératif au Département de chimie.

CHM 2223 ANALYSE INSTRUMENTALE (3-1-5) — Instrumentation chimique en analyse quantitative. Méthodes spectroanalytiques: absorption, émission, fluorimétrie, dispersion. Rayons X et radio-isotopes. Chromatographie. Méthodes électrochimiques: potentiométrie, voltamétrie et conductométrie. — Auteurs recommandés: G.W. Ewing: Instrumental Methods of Chemical Analysis (McGraw-Hill). — Prérequis: CHM 1213 et CHM 1203.

- CHM 2262 TECHNIQUES D'ANALYSE CHIMIQUE (1-3-2) Principes et applications en laboratoire des notions suivantes: équilibres acido-basiques, complexométrie, précipitation. Initiation aux méthodes instrumentales d'analyse. Destiné aux étudiants en biologie. Auteur recommandé: notes du professeur.
- CHM 2413 CHIMIE ORGANIQUE II (3-1-5) Réactions organiques: aspect éncrgétique détermination du mécanisme, intermédiaires principaux. Substitution nucléophile. Elimination. Addition nucléophile aux groupements carbonyles. Le programme correspond à la matière des chapitres 8,9,10,11 et 12 du livre de référence: Hendrickson, Cram et Hammond, Organic Chemistry (McGraw-Hill). Prérequis: CHM 1423.
- CHM 2523 CHIMIE ORGANIQUE III (3-1-5) Substitution nucléophile sur groupements carbonyles. Réactions d'élimination. Additions électrophiles aux doubles liaisons. Réarrangements moléculaires. Oxydation et réduction. Composés hétérocycliques. Le programme correspond aux chapitres 13,14,15,18 et 24 du livre de référence: Hendrickson, Cram et Hammond. Organic Chemistry (McGraw-Hill). Prérequis: CHM 1423 et 2413.
- CHM 2612 TRAVAUX PRATIQUES DE BIOCHIMIE ET CHIMIE ORGANIQUE (0-6-2) Synthèse d'un dipeptide. Cinétique enzymatique. Energie d'activation d'une réaction catalysée par une base et par une enzyme. Rapports bibliographiques concernant une molécule chimique et concernant un test utilisé en biochimic clinique. Séparation de mélanges d'inconnus et identification de ces inconnus. Réactions de Dicls-Aldev. Réactions d'addition et d'élimination. Résolution d'un mélange racémique. Analyse spectrale.
- CHM 2613 BIOCHIMIE (3-1-5) Structure et propriétés physico-chimiques des protéines. Stéréospécificité et activité biologique. Bioénergétique. Métabolisme énergétique. Les glucides. Structure et métabolisme des lipides. Aspects du métabolisme intermédiaire et du métabolisme de l'azote. Structure et propriétés des nucléotides et des acides ribo et désoxyribo · nucléiques. Biosynthèse des macromolécules et chimie de l'hérédité. Auteur recommandé: Aubert, Dubert, Gros et Tavlitzki. Introduction à la biochimie (Ediscience). Prérequis: CHM 1423 (ou 1432 ou 1443).
- CHM 2723 CHIMIE PHYSIQUE II (3-1-5) Revue des principes de thermodynamique. Quantités partielles molaires, potentiel chimique, équilibre entre phases, solutions idéales, propriétés colligatives, phases condensées, systèmes non idéaux, électrolytes, piles électrochimiques, phénomènes de surface. Auteur recommandé: Moore, Physical Chemistry, 4e édition (Prentice-Hall). Prérequis: CHM 1714.
- CHM 2733 CHIMIE PHYSIQUE I (3-0-6) Propriété des gaz. Théorie cinétique des gaz. La cinétique chimique. Propriétés des surfaces et des collo7des. Les macromolécules. Structure moléculaire. Destiné aux étudiants en biologie. Auteur recommandé: Barrow, Physical Chemistry, (McGraw-Hill). Williams et Williams, Basic Physical Chemistry for Life Sciences (Freeman).
- CHM 2743 CHIMIE PHYSIQUE II (3-0-6) Thermodynamique chimique. Thermochimie. Equilibres chimiques. Propriétés des liquides et des solides. Equilibre entre phases. Les solutions. L'électrochimie, Destiné aux étudiants en biologie. Auteur recommandé: Barrow, Physical Chemistry, (McGraw-Hill).
- CHM 2823 TRAVAUX PRATIQUES DE CHIMIE PHYSIQUE (0-6-3) Etudes expérimentales des propriétés thermodynamiques de systèmes à l'équilibre (équilibre de phases, équilibre chimique, mélanges de liquides); électrochimie et propriétés des solutions électrolytiques; phénomènes de surface; macromolécules en solution; spectroscopie atomique et moléculaire. L'accent est mis sur l'initiative des étudiants dans le choix et l'exécution des expériences. Auteurs recommandés: Shoemaker et Garland, Experiments in Physical Chemistry (McGraw-Hill).
- CHM 2852 TRAVAUX PRATIQUES DE CHIMIE PHYSIQUE (0-4-2) Propriétés physiques des solutions et des systèmes macromoléculaires: cryoscopie, calorimétrie, mesures de pression osmotique, point isoélectrique des protéines, cinétique enzymatique, solutions électrolytiques, tension superficielle, viscosité des liquides, adsorption en solution, diagramme de phases, piles électrochimiques, électrophorèse. L'accent est mis sur les principes et les techniques physico-chimiques appliqués à la biológie et à la biochimie. Auteurs recommandés: Shoemaker et Garland, Experiments in Physical Chemistry (McGraw-Hill).

CHM 2912 TRAITEMENT DES DONNEES EXPERIMENTALES (2-2-2) — Les courbes de distribution. Propagation de l'erreur. Khi-Carré. Moindres carrés pour un polynôme. Student t. Intervalle de confiance. Contraintes. Moindres carrés sur une fonction non linéaire. Moindres carrés non linéaires. La méthode matricielle appliquée à l'étude des moindres carrés. Ce cours est intégré au cours CHM 2823. — Auteur recommandé: Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill).

CHM 2913 CHIMIE PHYSIQUE III (3-2-4) — Revue de la théorie des corpuscules et ondes: historique de l'équivalence des deux phénomènes, modèle de Bohr, relation de Bohr-Heisenberg, équation de Schroedinger. Particule libre et dans un potentiel. Oscillateur harmonique. Structure de l'atome d'hydrogène. Atome à plusieurs électrons. Ion molécule H2. Molécule d'hydrogène. Molécules di-atomiques, poly-atomiques; systèmes conjugués. Introduction au champ cristallin. — Auteurs recommandés: Hanna, Quantum Mechanics in Chemistry (Benjamin); Moore, Physical Chemistry, 4e édition (Prentice-Hall). — Prérequis: MAT 1943 et MAT 1963.

CHM 2922 CHIMIE PHYSIQUE IV (2-1-3) — Quelques implications de la symétrie moléculaire en spectroscopie. L'équation de Schroedinger dépendante du temps et les transitions spectrales. Spectroscopie et photochimie. Introduction à l'étude de la structure des solides par la diffusion des rayons X. Auteur recommandé: Moore, Physical Chemistry, 4è édition (Prentice-Hall) chapitres 16,17,18 et 19. Prérequis: CHM 2913

CHM 3000 STAGE T-3 — Troisième stage pratique pour les étudiants du régime coopératif au Département de chimie.

CHM 3023 CHIMIE DES MACROMOLECULES (4-0-5) — Réactions et mécanismes de polymérisation, polycondensation, poly-addition, copolymérisation. Aspect industriel. Caractères spécifiques des macromolécules. Configuration et conformation des chaînes. Distribution et détermination des poids moléculaires. Thermodynamique des solutions polymériques. Propriétés physiques et chimiques des macromolécules. Vitrification. Emulsions et suspensions. Synthèse de macromolécules biologiques.

CHM 3053 DIDACTIQUE DE LA CHIMIE I — Entraînement progressif aux techniques propres à l'enseignement de la chimie au niveau secondaire par la présentation de micro-leçons. Les notions de l'enseignement expérimental vs traditionnel et magistral. Le
rôle pédagogique des discussions avant et après le laboratoire comme véhicule principal de notions, de concepts et de l'élaboration de modèles. L'enseignement de certaines notions mathématiques propres à l'enseignement de la chimie.

CHM 3063 DIDACTIQUE DE CHIMIE II — Un approfondissement de la technique de l'enseignement par la microleçon et l'autocritique. Une introduction à la pédagogie des principaux secteurs de la chimie, à savoir: l'état gazeux, l'atome, le tableau périodique, la liaison chimique, les réactions chimiques et l'équilibre. L'usage des films du CHEM STUDY pour mieux initier l'étudiant à la pédagogie de ces principaux secteurs. Théorie et pratique de la rédaction d'examens objectifs en sciences.

CHM 3113 CHIMIE INDUSTRIELLE (3-3-3) — Etude du développement et de l'application de procédés manufacturiers d'importance dans lesquels certains changements physiques et/ou chimiques de matériaux sont impliqués. Considération de la chimie des réactions déterminantes et étude des caractéristiques des pièces d'équipement principales impliquées dans les transformations physiques et chimiques. Familiarisation au laboratoire avec de l'équipement semi-industriel et vérification dans des séances de travaux pratiques des lois de conservation de masse et d'énergie à l'échelle macroscopique liées au transfert de masse et à l'échange thermique dans de tels appareils.

CHM 3123 CHIMIE INORGANIQUE II (3-1-5) — Théorie des complexes des métaux de transitions. Géochimie. Chimie de l'état solide. — Auteurs recommandés: Cotton et Wilkinson, Advanced Inorganic Chemistry, 3e édition (Interscience); Fyfe, Geochemistry of Solids. (Wiley).

CHM 3213 TRAVAUX PRATIQUES D'ANALYSE INSTRUMENTALE (0-7-2) — Les expériences portent sur des aspects de l'électrochimie, de la chromatographie, de la spectroscopie d'émission et d'absorption afin de familiariser l'étudiant avec des techniques et des instruments analutiques. — Auteurs recommandés: Texte du professeur. Guilbault et Hargis, Instrumental Analysis Manuel (Dekker). — Corequis: CHM 2223.

CHM 3222 ANALYSE ORGANIQUE (2-1-3) — Introduction aux méthodes spectroscopiques RMN, I.R., U.V.; spectroscopie de masse. Séparation des méthodes organiques. — Détermination de la structure et de la conformation des produits organiques. — Auteurs recommandés: D.J. Pasto et C.R. Johnson, Organic Structure Determination (Prentice-Hall).

CHM 3314 TECHNIQUES ANALYTIQUES MODERNES (4-4-4) — Techniques électrochimiques: titrage, précipitation, complexation, oxydo-réduction. Electrodes spécifiques. Détections colorimétriques, potentiométriques et conductométriques. Voltamétrie et polarographie. Techniques spectroanalytiques: classification des divers phénomènes spectroscopiques. Absorption et émission atomique. Spectroscopie infrarouge, visible et ultra-violet. Chromatographie en phase liquide et gazeuse. Destiné aux étudiants en sciences appliquées. — Auteurs recommandés: Peters, Hayes et Hieftje, Chemical Separations and Measurements, Theory and Practice of Analytical Chemistry (Saunders). — Prérequis: CHM 1783 et CHM 1432.

CHM 3322 TRAVAUX PRATIQUES DE CHIMIE ORGANIQUE (0-6-1) — Utilisation des méthodes spectroscopiques (IR, RMN du proton et de C-13) pour l'analyse structurale et conformationnelle de composés organiques. Etudes de mécanisme des réactions organiques en utilisant les équations de Hammett et Bronsted, la cinétique, l'effet isotopique du deutérium. Etude d'intermédiaires tels les carbocations, les carbanions, et les radicaux. Expériences illustrant les règles de Woodward-Hoffmann. — Auteurs recommandés: Pasto et Johnson, Organic Structure Determination (Prentice-Hall).

CHM 3323 TRAVAUX PRATIQUES DE CHIMIE ORGANIQUE AVANCEE (0-8-1) — Utilisation des réactions chimiques les plus fréquemment rencontrées en synthèse organique. Utilisation des méthodes spectroscopiques modernes pour élucider les structures.

CHM 3423 SYNTHESE ORGANIQUE (3-0-6) — Elucidation de structure et synthèse de produits naturels: terpènes, sesquiterpènes, stéroïdes, alcaloïdes, phéromones, prostaglandines. Synthèse de produits non naturels tels le twistane, le triquinacène, etc.

CHM 3512 CHIMIE HETEROCYCLIQUE (2-0-4) — Etude des cycles organiques comprenant de l'oxygène, de l'azote et du soufre comme hétéroatome. — Auteurs recommandés: A.R. Katritzky, Advances in Heterocyclic Chemistry (Academic Press); L.A. Paquette, Principles of Modern Heterocyclic Chemistry (Benjamin).

CHM 3523 CHIMIE ORGANIQUE IV (3-1-5) — Substitution électrophile sur le noyau aromatique. Relations d'énergie libre (Hammett). Réactions radicalaires. Photochimie. Réactions péricycliques. Le programme correspond aux chapitres 16,20,22 et 21 du livre de référence: Hendrickson, Cram et Hammond, Organic Chemistry (McCraw-Hill). — Prérequis: CHM 1423 et 2413.

CHM 3612 BIOSYNTHESE (2-0-4) — Concepts de métabolites primaires et secondaires, précurseurs, production d'énergie. Contrôle et régulation. Biosynthèse des terpènes, stéroïdes, protéines, peptides antibiotiques, polyacétates, acides gras, phénoliques, sucres. Photosynthèse. Méthodes de culture. — Auteur recommandé: Bulock, The Biosynthesis of Natural Products. An Introduction to Secondary Metabolism (McGraw-Hill).

CHM 3623 CHIMIE DES PROTEINES (3-1-5) — Classification et composition des protéines. Diverses méthodes de purification. Etude de détermination de séquence (Structure primaire). Autres niveaux d'organisation de structure et moyens d'établir ces structures. Propriétés macromoléculaires et enzymatiques. Moyens chimiques pour identifier certains résidus d'acides aminés impliqués dans la catalyse enzymatique. Membranes cellulaires. Utilisation industrielle d'enzymes. Auteur recommandé: notes du professeur.

CHM 3813 TRAVAUX PRATIQUES DE CHIMIE PHYSIQUE II (0-8-1) — Les expériences visent à permettre à l'étudiant de concrétiser certains concepts de la chimie quantique, de l'état solide et de la thermodynamique statistique. Les techniques utilisées sont celles de la spectroscopie optique: infrarouge, Raman, visible et ultraviolet. L'étudiant devra aussi se familiariser avec les techniques du vide moyen. Il devra aussi , quand possible, utiliser les statistiques pour analyser ses résultats. Auteur recommandé: Shoemaker et Garland, Experiments in Physical Chemistry (McGraw-Hill). — Prérequis: CHM 2922 et CHM 2823.

CHM 3913 ELECTROCHIMIE (3-0-6) — Thermodynamique des piles et d'une électrode idéalement polarisée. Structure de la couche double et son effet sur la vitesse des réactions électrochimiques simples. Techniques modernes pour l'analyse des mécanismes complexes. Applications de l'électrochimie: corrosion, piles à combustibles, électrosynthèse. Auteurs recommandés: J. O'M. Bockris et D. Drazic, Electrochemical Science (Taylor and Francis).

CHM 4000 STAGE T-4 — Quatrième stage pratique pour les étudiants du régime coopératif au Département de chimie.

Cours des 2e et 3e cycles

CHM 4103 CHIMIE DU MILIEU (3-0-6) — Dynamique chimique du milieu: caractérisation des eaux, de l'air et des sols. Perturbation de l'équilibre des milieux par la pollution. Techniques correctives: sélection et analyse physico-chimique des systèmes de traitement. — Prérequis: CHM 1783 ou l'équivalent.

CHM 4322 CHROMATOGRAPHIE EN PHASE LIQUIDE — Cours intensif d'une semaine visant principalement à aider l'analyste industriel à mieux comprendre et à mieux utiliser les méthodes chromatographiques. Des travaux dirigés et des séances d'exercices accompagnent les cours théoriques. Ce cours n'est pas offert au programme régulier du B.Sc.

CHM 4423 SPECTROSCOPIE ANALYTIQUE (3-0-6) — Analyse quantitative, techniques avancées et applications typiques de la spectroscopie IR, UV, RMN, et RPE et la spectrométrie de masse. Fondement et application de la susceptibilité magnétique et l'effet de Moessabauer à l'analyse. Analyse simultanée des systèmes à plusieurs composés. — Auteurs recommandés: Strobel, Chemical Instrumentation, 2nd Edition (Addison-Wesley). Ewing, Topics in Chemical Instrumentation (Marc Printing Co.). — Prérequis: CHM 2223, CHM 3213 et CHM 3222.

CHM 4453 CHIMIE PHYSIQUE DES SOLUTIONS IONIQUES (3-0-6) — Revue des principes d'électrostatique. Propriétés des solvants. L'eau liquide. Solvants mixtes. Solvatation: propriétés thermodynamiques et cinétiques, études spectroscopiques. Forces interioniques en solution: fonctions thermodynamiques d'excès, propriétés cinétiques, association, relargage. Stabilité des sols. Détergents. Poly-électrolytes et résines. Sels fondus. Systèmes acide-base. Le contenu détaillé du cours pourra changer selon les intérêts des étudiants.

CHM 4512 CHIMIE PHYSICO-ORGANIQUE (2-1-3) — Les équations de Hammett et Bronsted. La cinétique. L'effet isotopique du deutérium. Les carbanions. Les réactions d'élimination. Les carbocations classiques et non classiques: obtention, stabilité, réactions (réarrangements). Introduction aux règles de Woodward-Hoffmann. — Prérequis: CHM 2413.

CHM 4922 PRINCIPES DE LA TECHNOLOGIE ELECTROCHIMIQUE — Cours intensif d'une semaine visant principalement à aider les scientifiques industriels à acquérir les connaissances de base dans les principales techniques électrochimiques. Des travaux dirigés et des séances d'exercices accompagnent les cours théoriques. Ce cours n'est pas offert au programme régulier du B.Sc.

CHM 5012 Seminaire I - Séminaire au niveau de la maîtrise.

CHM 5013 METHODES ELECTROANALYTIQUES (3-0-6) — Echantillonnage représentatif et mise en solution. Potentiométrie. Electrodes spécifiques. Polarographie conventionnelle et différentielle. Electrophorèse. Coulométrie et voltamétrie. Autonanalyseurs et masquage chimique. Auteur recommandés: Strobel Chemical Instrumentation, 2nd Edition (Addision-Wesley; Ewing, Topics in Chemical Instrumentation (Marc Printing Co.). — Prérequis: CHM 3223 et CHM 3213. — Corequis: CHM 3222.

CHM 5026 TRAVAUX PRATIQUES D'ANALYSE INSTRUMENTALE I \longrightarrow (0-12-6) Travaux pratiques accompagnant le cours CHM 5013.

CHM 5113 CHIMIE DES INTERFACES (3-0-6) — Ce cours vise à familiariser l'étudiant avec la physicochimie des interfaces gaz-liquide, liquide-liquide, gaz-solide et liquide-solide. Les principaux sujets d'application constituent l'adsorption, la chromatographie, les phénomènes aux électrodes et les collogdes.

CHM 5122 SEMINAIRE II - Séminaire au niveau de la 1re année du doctorat.

CHM 5223 SEPARATIONS CHROMATOGRAPHIQUES (3-0-6) — L'accent est spécialement mis sur la chromatographie et les méthodes connexes. On envisage successivement l'aspect dynamique et l'aspect thermodynamique de la chromatographie et leurs conséquences par rapport à l'analyse. L'étude de l'instrumentation se limite aux principaux détecteurs y compris les détecteurs spécifiques. Les autres modes de séparation (diffusion, distillation, extraction, électrophorèse, membranes, etc.) sont sommairement abordés. Auteurs recommandés: Karger, B.L., Snyder, L.R. et Horvath, C., An Introduction to Separation Sciences (Wiley).

CHM 5232 SEMINAIRE III - Séminaire au niveau de la 2e année du doctorat.

CHM 5236 TRAVAUX PRATIQUES D'ANALYSE INSTRUMENTALE II — Travaux pratiques accompagnant le cours CHM 5223.

CHM 5313 - ANALYSE CONFORMATIONNELLE ET STEREOCHIMIE (3-0-6)-- Conformation de composés cycliques de 5,6,7 et 8 membres. Conformation des molécules acycliques. Analyse conformationnelle des hétérocycles. Les méthodes spectroscopiques utilisées dans l'analyse de conformation. Conformation des hydrates de carbone. L'effet anomère. Théorie du contrôle stéréoélectronique et ses applications.

CHM 5323 CHIMIE ORGANIQUE AVANCEE (3-0-6) — Discussion plus approfondie de la chimie organique. Synthèse. Etude des produits naturels. Mécanismes des réactions. Détermination de structure.

CHM 5333 CHIMIE PHYSICO-ORGANIQUE AVANCEE (3-0-6) — Cinétique. Thermodynamique. Equations linéaires d'énergie libre. Fonctions d'acidité. Catalyse acido-basique. Effets isotopiques. Paires d'ions. Mécanismes de réactions.

CHM 5353 PHOTOCHIMIE ET CHIMIE RADICALAIRE (3-0-6) — Nature, conformation et détection des radicaux. Production des radicaux. Réactions des radicaux. Lois de la photochimie. Processus photophysiques primaires. Processus photochimiques primaires. Réactions photochimiques types.

CHM 5393 THEORIE ET APPLICATIONS DES ORBITALES MOLECULAIRES EN CHIMIE ORGANIQUE (3-0-6). La construction des orbitales moléculaires à partir des orbitales atomiques. Approximations de Huckel. Introduction à la théorie de groupe. Symétrie des orbitales (règles de Wookward - Hoffmann). Réactions péricycliques. Contrôle stéréoélectronique.

CHM 5453 CHIMIE DES SOLUTIONS (3-0-6) — Ce cours consiste en l'étude de la thermodynamique et des autres propriétés physicochimiques des liquides et des solutions. Une attention particulière est accordée aux solutions aqueuses en regard de leur importance industrielle et biologique.

CHM 5483 SPECTROSCOPIE AVANCEE (3-0-6) — Les fondements de la spectroscopie de rotation et de vibration-rotation sont présentés à un niveau suffisamment avancé pour permettre à l'étudiant l'accès à la littérature moderne dans cos domaines. On attache beaucoup d'importance à la comparaison avec l'expérience afin de concrétiser les développements théoriques. — Auteur recommandé: Herzberg, G.H. Molecular Spectra and Molecular Structure, Vols. I, II et III (Van Nostrand). — Prérequis: CHM 4473.

CHM 5523 RESONANCE MAGNETIQUE (3-0-6) — Introduction de la théorie de la résonance magnétique. L'analyse des spectres RMN de deuxième ordre. RMN du ¹³C. L'échange chimique et le temps de relaxation en RMN. Analyse structurale et conformationnelle des produits naturels. Analyse conformationnelle des cyclohexanones et de leurs dérivés à partir des spectres RMN. Applications de la RPE en chimie organique.

CHM 5923 THEORIE DES GROUPES ET APPLICATIONS EN CHIMIE (3-0-6) — Ce cours vise à faire acquérir par l'étudiant une connaissance des applications de la théorie des groupes à la chimie notamment dans les domaines de la chimie quantique, de la spectroscopie moléculaire, du champ cristallin et de la chimie organique. Auteur recommandé: Cotton, F.A., Chemical Applications of Group Theory, 2è édition (Wiley Interscience). Prérequis: CHM 2922.

MATHEMATIQUES

Cours de ler cycle

MAT 1000 STAGE T-1 — Premier stage pratique pour les étudiants du régime coopératif au Département de mathématiques.

MAT 1023 CALCUL LINEAIRE ET PROGRAMMATION LINEAIRE — Introduction à la programmation linéaire. Algorithme de la méthode du simplexe. Calcul matriciel. Indépendance linéaire. Changement de bases. Elements de géométrie convexe. Méthodes pratiques de résolution des programmes linéaires. Méthodes du tableau simplexe (du pivot). Les 2 phases de la méthodes du simplexe. Relations d'exclusion. Méthodes matricielles. Problèmes de transport. — (Ce cours est offert aux étudiants inscrits à la Faculté des arts).

MAT 1082 INFORMATIQUE — Organigramme et programmation. FORTRAN IV. Applications à la chimie.

MAT 1083 INFORMATIQUE — Généralités sur les ordinateurs et les langages utilisés. Organigrammes et programmation. Etude de FORTRAN IV. Programmation structurée. Nombreux exercices d'application, particulièrement aux sciences humaines. Projet de session. Ce cours est offert aux étudiants inscrits à la Faculté des arts.

MAT 1093 STATISTIQUE DESCRIPTIVE — Généralités: schéma d'une étude statistique. Etude d'une série à une dimension: représentation graphique et paramètres de la série. Etude d'une série à 2 dimensions. Coefficient de corrélation. Ajustement. Cas particulier d'une série chronologique. Notions de probabilités. Analyse combinatoire. Axiomes. Lois élémentaires. Estimation et échamtillonnage. Texts. Décision statistique. -- Ouvrage de référence: Monjallon, "Statistique descriptive" (Vuibert). — (Ce cours est offert aux étudiant inscrits à la Faculté des arts).

MAT 1123 ALGEBRE LINEAIRE — Vecteurs: motivation, définition, opérations sur les vecteurs, normes, espace vectoriel, orthogonalisation. Matrices: définition, divers types de matrices, opérations sur les matrices, déterminant, matrice inverse, opérations élémentaires, matrice échelonné, transformations linéaires. Systèmes linéaires: rang, systèmes homogènes, simplification. Valeurs propres et vecteurs propres: polynôme caractéristique, valeurs propres d'une matrice symétrique, diagonalisation, localisation des valeurs propres, formes quadratiques, méthodes de calcul des valeurs propres. — (Ce cours est offert aux étudiants inscrits à la Faculté des sciences appliquées).

MAT 1143 CALCUL DIFFERENTIEL ET INTEGRAL (3-2) — Dérivées des fonctions d'une variable. Courbes y = f(x). Coordonnées polaires. Nombres complexes. Intégrales simples. Etude de séries. Dérivées partielles des fonctions de plusieurs variables. — (Ce cours est offert aux étudiants inscrits à la Faculté des sciences appliquées). — Volume recommandé: Kreyszig, Erwin, Advanced Engineering Mathematics, John Wiley \S Sons.

MAT 1153 GEOMETRIE ET ANALYSE VECTORIELLE (3-2) — Opérations sur les vecteurs. Application des dérivées partielles à la géométrie dans R³. Coordonnées cylindriques et sphériques. Intégrales doubles et triples. Dérivée directionnelle, gradient d'une fonction scalaire. Divergence et rotationnel d'un champ vectoriel. Intégrales de ligne et de surface. — (Ce cours est offert aux étudiants inscrits à la Faculté des sciences appliquées). — Volume recommandé: Kreyszig, Erwin, Advanced Engeneering Mathematics, John Wiley & Sons. — Prérequis: MAT 1143.

MAT 1224 ALGEBRE I — Principe d'induction. Ensembles, relations, fonctions, opérations, familles, injections, surjections. Arithmétique de f(E) et de f- 1 (E). Relations d'équivalence, partitions, ensemble-quotient, comptabilité, entiers modulo m. Monoïdes, homomorphismes, parties stables, groupes, sous-groupes, théorème de Lagrange, ordre d'un élément, classification des groupes cycliques. Permutations, décomposition en cycles disjoints, parité, $\mathbf{A}_{\mathbf{l}}$. Divisibilité dans Z, pgcd, théorème de Bezout, petit théorème de Fermat, théorème fondamental de l'arithmétique. Anneaux, propriétés élémentaires. Rudiments de la théorie des anneaux de polynômes à coefficients dans un corps.

MAT 1234 CALCUL DIFFERENTIEL ET INTEGRAL — Suites de nombres réels: bornées, monotones, convergentes, sous-suites. Calcul des limites. Etude des séries réelles. Série de puissance. Les fonctions d'une variable réelle. Dérivation. Théorème de la moyenne, approximation. Techniques d'intégration, méthodes numériques. Introduction aux fonctions à plusieurs variables, dérivées partielles, règles d'enchaînement, problèmes d'extrema. Intégrales itérées des fonctions à 2 et 3 variables; coordonnées polaires, sphériques, cylindriques; Jacobien et changement des limites d'intégration. Dérivation sous le signe d'intégration. Intégrales impropres. Fonctions eulériennes.

MAT 1244 ANALYSE I — Les réels: inégalités, valeur absolue, borne supérieure. Suites réelles: bornées, monotones, convergentes. Sous-suites. Théorème de Bolzano-Weierstrass. Calcul des limites. Les fonctions réelles: points d'accumulation, limite d'une fonction, liens avec les suites. Continuité et principaux théorèmes concernant les fonctions continues sur un segment. Dérivées, règle d'enchaînement, problèmes d'extrema. Théorème de la moyenne, approximations. Règle de l'Hôpital. Fonctions inverses. Exercices sur les fonctions classiques. Tableau de variation.

MAT 1264 MODELES MATHEMATIQUES — L'outil essentiel de ce cours est l'analyse. Calcul approché des racines d'une équation, méthode de Newton, itération, calcul d'erreurs. Equations aux différences et modèles utilisant les équations aux différences. Equations aux différences finies linéaires; problèmes aux limites. Modèles formulés à partir de situations empruntées à la biologie, à la gestion, à l'économique, etc. Origine des équations différentielles: famille de courbes, brachystochrone, oscillation, mouvement planétaire, radio-activité, etc. Lequation du premier ordre, solutions particulières et solutions générales; équations à variables séparables, exactes, équation linéaire du ler ordre. Equations linéaire du second ordre, wronskien. Résolution par développement en série. Système d'équations du premier ordre. Applications à de nombreux modèles tirés de la physique, de l'astronomie, de la biologie. Disponibilité de l'ordinateur. — Prérequis: MAT 1244 et MAT 1324.

MAT 1284 PROGRAMMATION I — Description d'un ordinateur à mémoire interne. Programmation structurée et éléments de WATFIV-S. Etude de FORTRAN IV par des exemples expliqués: présentation de problèmes simples. Revue rapide des instructions essentielles: arithmétiques, déclarations, IF, GO TO, lecture/écriture simple. Etude des règles arithmétiques, variables indicées, dimensions. Instructions de contrôle (sauf DO). Instruction DO, READ, WRITE, FORMAT. Sous-programmes, fonctions utilisation de bibliothèques. Description d'un système de programmation. Langage machine, langage d'assemblage, langage algorithmique. Assembleurs, compilateurs, interprétateurs, chargeurs. Projet de session.

MAT 1293 STATISTIQUE I — Mesure de tendance centrale, de dispersion, de concentration, de dissymétrie. Nombres indices. Indices simples. Indices pondérés (Laspeyres, Paasche, Fisher). Régression et corrélation simple et multiple. Statistique chronologique. — (Ce cours ainsi que le cours MAT 1393 sont offerts aux étudiants inscrits à la Faculté des arts).

MAT 1323 MATHEMATIQUES DISCRETES — Systèmes de numération unibases et multibases. Calcul propositionnel. Algèbre de Boole. Application à l'étude des circuits logiques. Minimisations des expressions booléennes. Bascules, registres et autres circuits séquentiels. Graphes orientés. Matrices associées à un graphe. Applications de la théorie des graphes.

MAT 1324 ALGEBRE LINEAIRE I (3-2) — Espace vectoriel, sous espaces, indépendance linéaire, bases et dimension, somme et somme directe. Applications linéaires, algèbre des endomorphismes d'un espace vectoriel, matrices, algèbre matricielle, isomorphisme fondamental. Rang et nullité. Changement de base, matrices semblables. Systèmes d'équations linéaires. Algorithme de Gauss-Jordan. Matrices élémentaires. Calcul effectif du rang d'une matrice. Variétés linéaires, parallélisme, équations paramétriques et cartésiennes d'une variété linéaire: Déterminants, matrice adjointe, règle de Cramer, notions de volume et d'orientation. — Corequis: MAT 1224.

MAT 1382 PROGRAMMATION II A — Philosophie du langage. Rôle des quatre divisions. Description de la DATA DIVISION et de la PROCEDURE DIVISION. Etude des instructions de base. Mise au point d'un programme COBOL. Description des supports de fichiers (disques). Organisation de fichiers (séquentielle et indexée-séquentielle). Eléments du langage de commande JCL.

MAT 1384 PROGRAMMATION II — Langage COBOL: description et rôle des 4 divisions, description des données, étude des instructions de base, exemples de problèmes faisant intervenir des fichiers séquentiels, structuration et mise au point d'un programme COBOL. Fichiers: description des supports de fichiers, description des organisations de fichiers accessibles en COBOL (séquentiel, indexé-séquentiel, relatif, direct), utilisation en COBOL des fichiers en accès séquentiel et direct. Eléments du langage de commande JCL.

MAT 1393 STATISTIQUE II — Concept de probabilité. Distribution de probabilité. Lois binomiale, de Poisson, normale. Estimation et tests d'hypothèse. — (Ce cours est offert aux étudiants inscrits à la Faculté des arts). — Prérequis: MAT 1293.

MAT 1424 ALGEBRE LINEAIRE II (3-2) — Valeurs propres et vecteurs propres d'une matrice, d'un opérateur. Caractérisation des opérateurs diagonalisables. Produit scalaire, orthogonalité, isométries. Adjoint d'un opérateur. Structure des opérateurs normaux d'un espace hermitien; en particulier des opérateurs hermitiens, antihermitiens et unitaires. Structure des opérateurs normaux d'un espace euclidien; en particulier des opérateurs symétriques, antisymétriques et orthogonaux. Formes quadratiques, théorème d'inertie, classification des formes quadratiques (plus particulièrement en dimension 2 et 3). Application aux systèmes différentiels linéaires à coefficients constants. — Prérequis: MAT 1324.

MAT 1493 LABORATOIRE DE STATISTIQUES DESCRIPTIVES — Compilation des données. Construction des histogrammes. Calcul des principales mesures de position, de tendance centrale et de dispersion. Construction des ajustements linéaires, paraboliques et polynomiaux. Construction et analyse des séries temporelles simples, désaisonnalisation des données. Calcul des principaux indices économiques. Confrontation et ajustement des données à des lois élémentaires. Utilisation de calculatrices de divers types et de l'ordinateur.

MAT 1544 ANALYSE II — Polynôme de Taylor; reste. Fonctions équivalentes, comparaison de fonctions. Développements limités. Application à l'étude détaillée de fonctions asymptotes. Séries de réels, critères de convergence, convergence absolue, séries de puissances, séries entières. Définition de l'intégrale par des sommations. Admission de l'existence et des premières propriétés. Premier théorème de la moyenne. Techniques d'intégration; méthodes numériques. Calcul de volumes et de surfaces de révolution, centre de gravité. Introduction aux fonctions à plusieurs variables, représentation géométrique, courbes de niveau, dérivées partielles, différentielles, calcul d'erreur, règle d'enchaînement, problèmes d'extréma dont le plan des moindres carrés. Intégrales itérées des fonctions à deux et trois variables; coordonnées polaires, sphériques, cylindriques, Jacobien. — Prérequis: MAT 1244.

MAT 1563 GEOMETRIE — Rappel et compléments de géométrie affine; repères affines, utilisation de méthodes vectorielles, notion de barycentre de points massifs, notion de produit scalaire, trigonométrie, produit vectoriel, équations paramétriques et cartésiennes des droites et des plans de l'espace. Les coniques et les quadriques, changements de repères par translations et rotations, simplification de l'équation générale du second degré. Appendice: géométrie des nombres complexes, utilisation de groupes de symétries pour résoudre des problèmes de géométrie. Géométrie projective; la droite projective, homographes, changements de coordonnées, birapport, le plan projectif, coordonnées homogènes, transformations projectives, principe de dualité, perspectives, théorème de Desargues, relation entre le plan affine et le plan projectif. Coniques du plan projectif, intersection de 2 coniques, théorème de Pappus et Pascal. Frérequis: MAT 1224 et MAT 1324.

MAT 1691 NOTIONS DE CALCUL DES PROBABILITES — Axiomes des probabilités. Probabilités conditionnelles. Indépendance. Règle de Bayes. Analyse combinatoire. Variables a-léatoires. Loi d'une variable aléatoire. Expérance. Variance. Lois de probabilités usuelles. — (Ce cours est offert aux étudiants inscrits en biologie).

MAT 1763 EQUATIONS DIFFERENTIELLES — Equations différentielles du ler ordre. Equations différentielles linéaires du 2e ordre à coefficient constants. Systèmes d'équations différentielles linéaires à coefficiants constants. Résolution des équations différentielles par des séries. Transformée de Laplace. Equations différentielles partielles. — (Ce cours est offert aux étudiants de la Faculté des sciences appliquées). — Volumes recommandés: Murray Spiegel, "Applied Differential Equations" Prentice-Hall, 7th ed., 1962; Kreyszig, Erwin, "Advanced Engineering Mathematics" John Wiley & Sons. — Prérequis: MAT 1153.

MAT 1803 ENSEMBLES ET LOGIQUE — Introduction aux notions ensemblistes et logiques dans l'optique de l'ensemble à l'élémentaire: ensembles et propriétés des objets; sous-ensembles et propriétés; univers, complément, ensemble vide, intersection et conjonction. Réunion et disjonction. Ensembles d'ensembles et propriétés. Ensemble puissance. Produit cartésien. Introduction aux opérateurs logiques. Conjonction, disjonction, implication, équivalence. Notation logique. Méthodes de raisonnement. Valeurs de vérité. Quantificateurs. Quelques méthodes de démonstration. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire).

MAT 1813 RELATIONS ET FONCTIONS — Introduction aux notions de relations et de fonctions dans l'optique de l'ensemble à l'élémentaire: relation d'équivalence, de différence et d'ordre. Processus de symbolisation des relations. Propriétés des relations. Passage des relations aux fonctions. Propriétés des fonctions. Passage des relations aux nombres naturels: cardinaux et ordinaux. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803.

MAT 1863 GEOMETRIE I (3-2) — Idées de base de l'enseignement de la géométrie à l'élémentaire. Topologie: frontière, région extérieure, intérieure, trous, joints, voisinage. Géométrie des ombres: projection, transformations affines, similitudes, transformations euclidiennes. Etude des isométries: rotations, symétries, translations. Mesures: distance, surface, volume. Problème de mesure. Utilisation des coordonnées en géométrie: quadrillages, déplacements et transformations sur le quadrillage; combinaison de plusieurs transformations; équations de transformations. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803 et MAT 1813.

MAT 1873 ACTIVITES MATHEMATIQUES I — Initiation aux ensembles et aux opérateurs logiques en vue de l'étude du nombre dans l'optique de l'enseignement à l'école élémentaire. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire).

MAT 1883 MATHEMATIQUES APPLIQUEES AUX AFFAIRES — Rappels sur les progressions, les exponentielles et les logarithmes. Intérêt simple et sujets connexes. Intérêt composé, valeur présente et taux d'escompte. Annuités. Dettes, emprunts, hypothètiques, obligations et débentures. Technicalité des amortissements financiers et industriels. Evaluation des investissements. (Ce cours est offert aux étudiants de la Faculté d'administration et de la Faculté des arts).

MAT 1924 ALGEBRE LINEAIRE (3-2) — Espaces vectoriels de dimension finie: vecteur, dépendance linéaire, sous-espaces, bases et dimension. Transformations linéaires et matrices: matrice associée à une transformation linéaire, changement de base, rang d'une transformation et d'une matrice. Equations linéaires: systèmes d'équations linéaires, déterminants, rang matrice inverse, techniques de solution. Valeurs propres et vecteurs propres: polynôme caractéristique, matrices diagonales, matrices symétriques. Formes quadratiques: matrice associée, matrices hermitiennes, recherche des axes principaux d'inertie. On mettra aussi en évidence l'utilisation systématique des structures fondamentales de l'algèbre. — (Ce cours est offert aux étudiants inscrits en chimie, em géographie et en informatique de gestion).

MAT 1934 ALGEBRE LINEAIRE Algèbre des matrices, systèmes d'equations linéaires. Espaces vectoriels réels et complexes, opérateurs linéaires, représentations matricielles. Produits scalaires euclidiens et hermitiens, orthogonalité. Déterminants. Valeurs propres et vecteurs propres, étude des opérateurs orthoginaux, symétrique et antissymétriques. Formes quadratiques et hermitiennes. Applications.

MAT 1943 CALCUL DIFFERENTIEL ET INTEGRAL I — Fonctions d'une variable réelle: domaine et codomaine des fonctions élémentaires, limite et continuité, la dérivée, variation d'une fonction, intégrale, développements limités. Fonctions de plusieurs variables réelles: limite et continuité, dérivées partielles, différentielle totale, développement de Taylor à 2 variables, extrema, Hessien, multiplicateurs de Lagrange sous une ou 2 contraintes, intégrales doubles et triples, coordonnées curvilignes, jacobien et changement des limites d'intégration, dérivée d'une fonction vectorielle, gradient, divergence et rotationnel. — (Ce cours est offert aux étudiants inscrits en chimie, en physique et à la Faculté des arts).

MAT 1954 CALCUL DIFFERENTIEL ET INTEGRAL II — Solutions d'equations différentielles du premier ordre et d'ordre supérieur. Analyse vactorielle: dérivation de vecteurs. Systèmes de coordonnées curvilignes. Eléments de géométrie différentielle, formules de Frenet-Serret, gradient, divergence et rotationnel. Intégrales multiples, de lignes et de surface. Théorèmes de Stokes, Gauss et Riemann sous forme vectorielle. — (Ce cours est offert à l'intention des étudiants inscrits en physique).

MAT 1963 CALCUL DIFFERENTIEL ET INTEGRAL II — Equations différentielles: définition, classification et exemples de solutions. Equations du ler ordre: séparation de variables, équations homogènes, exactes et non exactes, facteurs d'intégration, équation linéaire et de Bernoulli. Solution de systèmes. Equations d'ordre supérieur: dépendance linéaire, Wronskien opérateur D, equation caractéristique, solutions d'équations avec second membre. Intégrales curvilignes et propriétés. Types de courbes fermées. Indépendance du chemin. Théorème de Green dans le plan. Intégrales de surface. Théorèmes de Gauss et de Stokes. Intégrales impropres. — (Ce cours est offert aux étudiants inscrits en chimie et à la Faculté des arts).

MAT 2000 STAGE T-2 — Deuxième stage pratique pour les étudiants du régime coopératif au Département de mathématiques.

MAT 2103 DIDACTIQUE DES MATHEMATIQUES I — Réflexions sur l'objet des mathématiques. Importance de l'histoire des mathématiques dans l'enseignement. Les objectifs de l'enseignement des mathématiques. Théorie de l'apprentissage des mathématiques. Les programmes de mathématiques à l'élémentaire et au secondaire. Le matériel didactique. Le laboratoire de mathématiques. L'enseignement de la géométrie. Travaux pratiques. — (Ce cours est offert aux étudiants du B.Sc. (mathématiques-pédagogie).

MAT 2173 PROGRAMMATION LINEAIRE — Exemples de problèmes d'optimisation linéaire. Représentation géométrique. Polyèdres convexes. Points extrémaux. Théorème fondamental de la programmation linéaire. Algorithme de la méthode du simplexe et variante. Théorèmes de dualité. Algorithmes dual et primal-dual du simplexe. Analyse post-optimale et programmation linéaire paramétrique. Algorithme du simplexe pour les variables bornées. Principe de décomposition de Dantzig et Wolfe, algorithme généralisé pour les variables bornées; exemples: problèmes de transport, de débit maximum. Prérequis: MAT 1424

MAT 2184 SYSTEMES DE PROGRAMMATION — Description d'un ordinateur à mémoire interne. Etude d'un langage machine et d'un langage d'assemblage. Construction d'un assembleur, de chargeurs, d'un éditeur, de liens et d'un interpréteur. Définition de macro-instructions et construction d'un macrogénérateur. Assemblage conditionnel. Récursivité. Moniteur. Mémoires centrales et périphériques. Canaux de transmission. Autres modes de contrôle des opérations d'E/S. Mécanisme d'interruption. Projet: écrire un système d'exploitation "batch" séquentiel en équipe. Corequis: MAT 2384

MAT 2193 PROBABILITE ET STATISTIQUE (3-2) — Probabilité: Définition axiomatique de la probabilité: interprétation fréquentiste. Probabilité conditionnelle. Théorème de Bayes et applications. Variables aléatoires. Fonctions de répartition et de densité. Etude de quelques densités usuelles. Transformation. Espérance. Moments. Fonctions caractéristiques. Cas de deux variables aléatoires. — Statististique: Distribution empirique. Organisation des données. Mesures de tendance centrale et de dispersion. Distributions d'échantillonnage: lois du Khi-carré, de Student et de Fisher-Snedecor. Estimation. Test d'hypothèses. Régression et corrélation linéaires. — (Ce cours est offert aux étudiants inscrits à la Faculté des sciences appliquées).

MAT 2213 ENSEMBLES ORDONNES — Relation d'ordre, ordre total, bon ordre. Treillis, treillis modulaires, distributifs, achevés. Algèbres de Boole, représentation. Nombres cardinaux, arithmétique des cardinaux. Nombres ordinaux. Quelques formes de l'axiome du choix. Groupes et anneaux ordonnés. — Prérequis: MAT 1224 et MAT 1324.

MAT 2224 ALGEBRE II — Rappels sur les groupes. Sous-groupes distingués, groupes quotients, théorème d'isomorphie, correspondance entre sous-groupes de G et de G/N. Rappels sur les anneaux. Idéaux, anneaux quotients, théorème d'isomorphie. correspondance entre sous-anneaux de A et de A/I. Quotients par un idéal premier, maximal. Anneaux euclidiens, principaux, noethériens, factoriels. Corps des fractions d'un anneau intègre. Caractéristique. Corps premiers, existence de corps finis à pⁿ éléments. Compléments d'algèbre linéaire: dualité et théorème de Jordan. — Prérequis: MAT 1224 et MAT 1424.

MAT 2233 INTRODUCTION A LA TOPOLOGIE — Espaces métriques, espaces normés, espaces complets. Topologie des espaces métriques. Propriétés topologiques de Rⁿ. Espaces topologiques généraux. Bases d'une topologie. Homéomorphismes. Voisinage, adhérence, intérieur, frontière. Continuité. Espaces compacts, espaces connexes. Produit d'espaces topologiques. — (Ce cours est offert aux étudiants inscrits au B.Sc. mathématiques-pédagogie). — Prérequis: MAT 1244.

MAT 2254 FONCTIONS COMPLEXES I — Nombres complexes et représentation géométrique. Topologie de C. Fonctions continues, analytiques; conditions de Cauchy-Riemann; fonctions élémentaires. Intégration: intégrale de ligne, théorème de Cauchy démontré dans quelques cas particuliers, formule intégrale de Cauchy, théorème de Morera et de Liouville, principe du maximum. Séries: séries de Taylor, formule de Hadamard, théorèmes d'Abel et de Taylor, séries et théorème de Laurent, singularités, théorème des résidus, théorème de l'argument, théorème de Rouché. — Corequis: MAT 2544.

MAT 2263 GEOMETRIE I (3-0) — Géométrie affine. La structure affine d'un espace vectoriel. Incidence et parallélisme. Quelques théorèmes de nature géométrique. Théorème de Désargues. Applications affines. Relations entre le groupe affine et le groupe linéaire général. Géométrie euclidienne. Structure d'espace euclidien. Norme. Distance. Sous-espaces orthogonaux. Distance d'un point à une droite, à un hyperplan. Isométries. Similitudes. Groupe orthogonal. Base orthogonale. Base orthonormale. Matrices orthogonales. Caractérisation des similitudes et isométries. — (Ce cours est offert aux étudiants inscrits au B.Sc. mathématiques-pédagogie). — Prérequis: MAT 1224 et MAT 1324.

MAT 2284 PROGRAMMATION INTERNE DES ORDINATEURS — Structure du système 360. Adressage. Format des instructions machine. Représentation interne des données. Etude approfondie du langage d'assemblage AL 360 (instructions et pseudo-instructions). Techniques de correction d'erreurs: analyse d'une image-mémoire. Etude du macro-assembleur: création et utilisation de macro-instructions, assemblage conditionnel Application à des problèmes concrets illustrant la structure des machines et les techniques de programmation.

MAT 2343 INTRODUCTION A LA TOPOLOGIE — La droite réelle. Métriques, normes, espaces pré-hilbertiens. Ouverts, fermée, intérieur, adhérence, frontière. Sous-espaces, produit fini d'espaces. Suites. Continuité, homéomorphisme. Espaces compacts, espaces complets. Méthode des approximations successives. — Corequis: MAT 2444.

MAT 2373 METHODES NUMERIQUES I — Arithmétique en point flottant. Erreurs en analyse numérique et stabilité de divers algorithmes. Résolution d'une équation non linéaire et algébrique. Approximation d'une fonction: interpolation polynômiale et meilleure approximation au sens de Chebyshev. Procédés numériques d'intégration et de dérivation. Prérequis: MAT 1284 et MAT 1544.

MAT 2384 STRUCTURES DES INFORMATIONS I — Concept, représentation et manipulation des structures de nombres. Vecteurs, tableaux, tables, files (piles, queues, dèques), chaînes, arbres, listes, fichiers, graphes, grammaires formelles; algorithmes de fouille, de tri, d'allocation et d'organisation dynamique des mémoires, de manipulation des arbres, de parcours dans les graphes. — Prérequis: MAT 1284.

MAT 2393 THEORIE DE L'ECHANTILLONNAGE — Echantillonnage aléatoire simple; estimation des paramètres. Echantillonnage pour des proportions. Estimation de la taille échantillonale. Echantillonnage stratifié. Estimateurs quotients. Estimateurs de régression. Echantillonnage systématique. Sources d'erreurs dans les sondages.

MAT 2444 ANALYSE III — Compléments sur les suites. Suites de Cauchy. Convexité et applications. Suites de fonctions: convergence simple, convergence uniforme. Séries de fonctions; séries entières; dérivation, intégration. Calcul approché de la somme d'une série. Intégrales impropres. Dérivation sous le signe d'intégration. Fonctions eulériennes. Séries de Fourier des fonctions de classe C. Transformée de Laplace. — Prérequis: MAT 1544.

MAT 2483 ORGANISATION D'UN ORDINATEUR — Rappels sur la théorie de la commutation, l'algèbre de Boole et les circuits logiques. Description détaillée de l'unité centrale d'un ordinateur moderne: génération des signaux et synchronisation; registres et transmissions des données; formats des instructions et accès à la mémoire centrale; fonctionnement d'un ordinateur simple; compteur d'instructions; décodage des instructions; matrice des micro-instructions et microprogrammation: unité arithmétique et logique; représentations des nombres en point fixe et en point flottant; circuits additionneurs; exécution des instructions du langage machine; modes d'adressage; modes de raccordement des sous-programmes fermés; diverses formes de chevauchements; circuits "look ahead". Etude comparée d'organisations internes différentes. Prérequis: MAT 1323 et MAT 1284

MAT 2494 PROBABILITES ET STATISTIQUE I — Algèbre d'événements. Notions de probabilité. Probabilité conditionnelle et indépendance. Variables aléatoires discrètes: loi de probabilité, moments, fonction de répartition. Quelques lois discrètes: uniforme, binomiale, Poisson, expergéométrique, binomiale négative. Variables aléatoire continues: densité, moments, fonction de répartition. Quelques lois continues: uniforme, gamma, bêta. Loi d'un vecteur aléatoire, lois conditionnelles et marginales. Loi normale dans R². Somme, produit et quotient de variables aléatoires indépendantes. Fonction génératrice des moments. Inégalité de Tchébychev, loi faible des grands nombres, théorème central limite. Etude de la loi normale. Loi de probabilité de fonctions de variable aléatoire et de vecteur aléatoire. Lois d'échantillonnage. Prérequis: MAT 1544.

MAT 2544 CALCUL DIFFERENTIEL ET INTEGRAL DANS Rⁿ — Espace euclidien: produit scalaire, norme, inégalité de Schwarz. Fonctions de plusieurs variables réelles, continuité, dérivation partielle, différentielle totale, fonctions composées. Dérivée directionnelle, gradient, divergence, rotationnel, matrice jacobienne. Théorèmes de la moyenne, formule de Taylor. Fonctions implicites et inverses. Exterma; multiplicateurs de Lagrange. Intégrales multiples itérées, transformation des intégrales multiples. Intégrales curvilignes et de surface. Théorème de Grenn, de Stokes et de Gauss. Champs conservatifs. Applications à divers domaines. — Prérequis: MAT 2444 ou MAT 2343 et MAT 1544.

MAT 2584 LNAGAGES DE PROGRAMMATION — Revue de langages: définition formelle de langage de programmation, caractéristiques syntaxiques et sémantiques. Propriétés générales de langages algorithmiques, allocation dynamique de mémoires, structures de blocs, transmission des paramètres. Traitement de listes, langages de traitement de listes. Description de données. Langages formels, éléments d'analyse sybtaxique. — Prérequis: MAT 1284 et MAT 2384.

MAT 2594 PROBABILITES ET STATISTIQUES II — Estimation ponctuelle de paramètres. Propriétés usuelles des estimateurs. Méthodes d'obtention d'estimateurs. Estimateurs de Bayes. — Estimation par intervalles de la moyenne, de la variance d'une loi normale. Estimation par intervalle d'une probabilité. Méthode générale de construction d'une intervalle de confiance. Intervalles de confiance pour de grands échantillons. — Tests d'hypothèse: généralités, hypothèse simple, lemme de Nayman-Pearson. — Test uniformément plus puissant. Quelques exemples. Hypothèses multiples. Quotient de vraisemblance généralisé et obtention de quelques tests. Tests d'adéquation. — Tests d'indépendance. Loi du couple de 2 variables aléatoires normales. Régression et corrélation linéaire simples. Estimations et tests associés. Théorème de Gauss-Markov. Prérequis: MAT 2494.

MAT 2692 STATISTIQUES — Lois d'échantillonnage. Estimation ponctuelle. Estimation par intervalle. Tests d'hypothèses. Notions d'analyses de variance. Régression et corrélation linéaire. (Ce cours est offert aux étudiants inscrits en biologie). — Prérequis: MAT 1691.

MAT 2744 CALCUL DIFFERENTIEL ET INTEGRAL III — Equations différentielles ordinaires. Solutions par séries. Polynòmes orthogonaux. Transformées de Laplace. Solutions d'équations aux dérivées partielles par la méthode de séparation de variables et par la transformée de Laplace. Séries de Fourier. Transformées finies et générales de Fourier. Applications à la solution d'équations aux édrivées partielles. Analyse harmonique. Problèmes de Sturm - Liouville. Prérequis: MAT 1954 ou MAT 1963.

MAT 2803 LABORATOIRE MATHEMATIQUE I — Notions ensembliste et logiques: ensemble appartenance, sous-ensembles, univers, ensemble vide, compléments, intersection et conjonction, réunion et disjonction, diagrammes de Venn et de Carroll, arbres logiques. Principaux processus mentaux visés: analyse, raisonnement, déduction. Notions relationnelles: produit cartésien, couple, représentation cartésiennes et sagittales. Propriétés des relations: réflexivité, symétrie et transitivité. Relations d'équivalence, d'ordre et de différence. Principaux processus mentaux visés: capacité d'ordonner, de classer, de comparer; établissement de liens et d'échelles de valeurs.

MAT 2813 LABORATOIRE MATHEMATIQUE II — Notions arithmétiques: analyse des prérequis à la notion du nombres: notions de classement, de suite et d'ordre, symbolisation, correspondance terme à terme, conservation de la quantité. Numération dans différentes bases. Opérateurs additifs et multiplicatifs. Principales aptitudes mentales visées: estimation des pluralités, pensée opératoire, symbolisation. Notions topologiques et géométriques: éléments de topologie: intérieur, extérieur, labyrinthes, réseaux. Initiation au monde des formes et des volumes. Etude de la mesure sous ses différents aspects: longueurs, angles, surfaces, volumes, poids, dans le cadre du système international. Principales qualités mentales visées: latéralité, structuration de l'espace, esprit scientifique.

MAT 2843 ARITHMETIQUE — Etude des nombres naturels, relatifs et rationnels. Opérations sur les nombres et applications diverses. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803 et MAT 1813.

MAT 2853 PROBABILITES ET STATISTIQUES — Introduction aux idées de la combinatoire, des probabilités et des statistiques en vue de l'enseignement à l'élémentaire. — Prérequis: MAT 1803, 1813 et 2843.

MAT 2873 ACTIVITES MATHEMATIQUES II — Introduction aux relations et aux propriétés des relations. Opérations sur les nombres naturels. Découverte et exploration du monde des formes. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire).

MAT 3000 STAGE T-3 — Troisième stage pratique pour les étudiants du régime coopératif au Département de mathématiques.

MAT 3103 DIDACTIQUE DES MATHEMATIQUES II — Les différentes étapes de l'abstration. La créativité mathématique. Le raisonnement par isomorphisme. Un enseignement ensembliste, relationnel et groupal des mathématiques. Moyens et matériel pédagogiques. L'enseignement de la géométrie affine et de la géométrie métrique, de l'algèbre. Le programme d'Erlangen perçu rétrospectivement. Un enseignement de l'analyse fondé sur la topologie. L'enseignement ocnoret et de la logique mathématique. — (Ce cours est offert aux étudiants inscrits au B.Sc. mathématiques-pédagogie).

MAT 3113 HISTOIRE DES MATHEMATIQUES — Vue d'ensemble: époques importantes et facteurs d'évolution. Bref historique de la notation et des systèmes de numération. Techniques de calcul. Développement des mathématiques vu à travers les extensions successives des nombres: des naturels aux quaternions; matrices et nombres transfinis. — (Ce cours comporte 2 leçons et 1 heure de séminaire par semaine).

MAT 3173 PROGRAMMATION NON-LINEAIRE ET EN NOMBRES ENTIERS — Programmation en nombres entiers (exemples, unimodularité: méthode des coupes de Gomory, algorithme de la subdivision successive, classes résiduelles modulo D; méthode énumérative). Programmation linéaire mixte. Problème du voyageur de commerce. Problème de saca-à-dos. Programmation linéaire multi-objective. Programmation non-linéaire: formes quadratiques, problèmes d'optimisation quadratique; fonctions convexes, conditions de Kuhn et Tucker; algorithme du simplexe dans le cas quadratique et convexe. Approximation du "cas général": linéarisation. Prérequis: MAT 2173.

MAT 3183 SYSTEMES D'EXPLOITATION I — Introduction aux systèmes d'exploitation. Fonctions des systèmes. Gestion des programmes: structure des programmes, appel dynamique de modules exécutables, réentrance, récursivité, recouvrement. Gestion des tâches: multiprogrammation, processus en parallèle, processus asynchrone, synchronisation. Gestion des ressources: allocation/désallocation, blocage. Gestion des intervalles de temps: horloge, allocation d'intervalle de temps, interruption. Gestion de la mémoire centrale. Rattrapage d'erreur de programmes, interception de mécanisme de fin anormale. — Prérequis: MAT 2284.

1

MAT 3193 STATISTIQUE MATHEMATIQUE — Introduction à la théorie de la décision: définitions, critères de sélection de règles de décision, exhauxtivité et complétude. Estimation: convergence, précision, estimateurs sans biais à variance minimum, estimateurs de Bayes, estimateurs du minimax, méthodes d'obtention d'estimateurs. Tests d'hypothèses: cadre décisionnel, Lemme de Neyman-Pearson, Lemme de Neyman-Pearson généralisé, Tests de structure de Neyman, propriétés des tests, tests séquentiels. Régions de confiance. Prérequis: MAT 2594

MAT 3202 TRAVAIL DIRIGE I — Sous la direction d'un professeur, l'étudiant doit faire une étude personnelle sur un sujet mathématique au niveau du B.Sc. et en faire une présentation écrite et orale. Ce travail peut être soumis au cours de l'une ou l'autre des trois dernières sessions du cours.

MAT 3212 TRAVAIL DIRIGE II — Sous la direction d'un professeur, l'étudiant doit faire une étude personnelle sur un sujet mathématique au niveau du B.Sc. et en faire une présentation écrite. Ce travail ne peut être soumis qu'au cours de l'une ou l'autre des 2 dernières sessions du cours.

MAT 3223 THEORIE DES CORPS — Approche historique. Rappels sur les anneaux de polynômes à une indéterminée à coefficients dans un corps. Polynômes irréductibles sur Z, Q, R, C. Extensions algébriques, corps de décomposition. Les nombres algébriques forment un corps algébriquement clos. Constructions à la règle et au compas. Extensions galoisiennes, monogènes. Théorème fondamental de la théorie de Galois. Résolutions par radicaux. Choix de thèmes optionnels en vue d'approfondir les sujets traités antérieurement. — Prérequis: MAT 2224.

MAT 3233 TOPOLOGIE ALGEBRIQUE — Le foncteur groupe fondamental défini sur la catégorie homotopique des espaces topologiques pointés. Indice d'une courbe fermée dans C. Théorème fondamental de l'algèbre. Groupe fondamental de S'. Rappels sur les produits, coproduits et objets libres dans Ab et dans Gr. Théorème de Seifert-Van Kampen. Calcul du groupe fondamental des surfaces compactes et autres espaces. Revêtements. Critère algébrique de relèvement à une application à l'espace total. Graphes; leurs groupes fondamentaux et leurs revêtements.

Applications. — Auteur recommandé: W.S. Massey, Algebraic: An Introduction . — Prérequis: MAT 2343 et MAT 2224.

MAT 3263 EQUATIONS DIFFERENTIELLES — Systèmes linéaires. Systèmes non-linéaires autonomes. Applications: modèle de Volterra-Lotka, circuits électriques, contrôle optimal, mécanique classique. — Prérequis: MAT 2544 et MAT 1264.

MAT 3273 METHODES NUMERIQUES II — Résolution numérique de systèmes linéaires: élimination de Gause par pivot partiel ou total, analyse inverse de l'erreur et amélioration itérative. Calcul des valeurs propres et vecteurs propres d'une matrice. Résolution numérique des équations différentielles avec conditions initiales: méthodes à pas libres, méthodes à pas libres, méthodes à pas libres, méthodes à pas libres, aux dérivées partielles. Prérequis: MAT 2373 et MAT 1424.

MAT 3283 SYSTEMES D'EXPLOITATION II — Introduction à la gestion de l'information (rappels sur les concepts, banque d'information). Structure de l'information sur support externe (disques et bandes magnétiques). Organisations des fichiers: séquentielle, partitionnée, indexée/séquentielle, directe. Méthode d'accès aux fichiers, traitement. Programmation des canaux au niveau EXCP. Introduction à la mémoire virtuelle. Introduction au télétraitement. — Travail par équipe: planification et mise en oeuvre d'une génération du système d'exploitation. — Prérequis: MAT 2284.

MAT 3293 PROCESSUS STOCHASTIQUES — Classification et exemples de processus aléatoires. Chaînes de Markov à temps direct: classification des états, théorème limite fondamentale, critères de récurrence, méthodes algébriques (valeurs propres et interprétation probaliste), distribution stationnaire, théorie harmonique. Applications aux sommes de variables aléatoires indépendantes et aux files d'attente. Introduction aux processus de naissance et de mort. — Prérequis: MAT 2494 et MAT 2594.

MAT 3313 LOGIQUE — Théories décidables et indécidables. Connectifs et tables de vérité: applications aux circuits et à la compilation des langages. Axiomatisation du calcul propositionnel. Théorème de Kalmar. Théories égalitaires du premier ordre. Fonctions récursives. Machines de Turing. Algorithmes de Markov. Arithmatisation d'une théorie. Problèmes indécidables. — Prérequis: MAT 1323.

MAT 3333 THEORIE DES NOMBRES — Sujets choisis en théorie analytique; par exemple, théorème des nombres premiers, approximation des réels par des rationnels. Eléments de la théorie algébrique. — Prérequis: MAT 2224 et MAT 2254.

MAT 3343 INTEGRATION ET THEORIE DES FONCTIONS — Compléments sur les fonctions: semi-continuité, convexité. Fonctions à variation bornée, fonctions absolument continues. Intégrale de Lebesgue. — Prérequis: MAT 2343 et MAT 2544.

MAT 3363 GEOMETRIE DIFFERENTIELLE CLASSIQUE — Rappel sur la théorie des courbes dans R³; longueur d'un arc régulier, courbure, torsion, formules de Frenet-Serret. Etude des surfaces de R³; espace vectoriel tangent et normal en un point, orientabilité. Première forme fondamentale; longueur d'une courbe, aires, angles. Seconde forme fondamentale, courbures normales, courbures principales, courbure de Gauss. Lignes de courbures. Surfaces développables. Formules de Gauss-Weingarter et le "theorema egregium" de Gauss. Isométries, courbures géodésiques. Interprétations géotriques de la courbure de Gauss (longueur d'un cercle géodésique, aire d'un disque géodésique). Surfaces à courbure constante. Le théorème de Gauss-Bonnet. Quelques propriétés globales des surfaces. — Prérequis: MAT 2544.

MAT 3373 METHODES DE MATHEMATIQUES APPLIQUEES — Notions sur les espaces vectoriels normés. Espaces de Hilbert. Systèmes orthonormaux. Polynômes de Legendre, Tchebichev, Laguerre, Hermite. Fonctions gamma et bêta. Fonctions de Bessel. Séries de Fourier. Transformée de Fourier. Applications à l'étude de certaines équations aux dérivées partielles. — Prérequis: MAT 2254, 2343 et 2544.

MAT 3403 MODELES DE LA RECHERCHE OPERATIONNELLE — Réseaux: rappels sur les graphes, problème du plus court chemin: applications; problème de débit maximum: généralisations, applications, théorème d'intégrité. La méthode PERT. Problèmes de gestion des sotcks: modèles élémentaires, gestion sur plusieurs périodes, modèles de planification de la production, algorithmes de types Futur-Passé et Passé-Futur; pénurie, variables bornées; fonctions de coûts convexes, problèmes de régularisation de la production, de répartition de l'effort. Files d'attentes: processus d'arrivée et de départ; files illimitées à un ou plusieurs guichets, files limitées. Programmation dynamique dans les chaînes de Markov. Prérequis: MAT 2494

MAT 3423 THEORIE DES GROUPES — Théorèmes d'isomorphie. Automorphismes intérieurs; normalisateur et centralisateur d'une partie; centre. Produit direct; produit semi-direct; extension. Opération d'un groupe dans en ensemble; orbite et stabilisateur d'un élément; équation aux classes, centre d'un groupe d'ordre fn; groupes d'ordre f². Théorèmes de Sylow. Théorème de Jordan-Holder; groupes simples. Suite dérivée; groupes résolubles. Groupes commutatifs: sous-groupes d'un groupe libre; groupes de torsion; structure des groupes de type fini; facteurs invariants et diviseurs élémentaires d'un groupe fini. Catégorie des groupes et catégorie des groupes commutatifs: monomorphismes, épimorphismes, limites projectives et limites inductives. — Prérequis: MAT 2224.

MAT 3443 THEORIE DES FONCTIONS ET ESPACES FONCTIONNELS — Espace normé, complété. Topologies sur espaces de fonctions. Convergence simple, uniforme, uniforme sur compacts; normes Lp; inégalités de HBlder et Minkowski. Théorèmes d'Ascoli, de Dini et de Stone-Weierstrass. Applications linéaires continues; norme d'opérateur. Théorèmes de Hahn-Banach, du graphe fermé et de l'application ouverte. Dualité, réflexivité. Projections continues. — Prérequis: MAT 2343.

MAT 3463 ELEMENTS DE GEOMETRIE ALGEBRIQUE — Corps des fractions d'un anneau intègre; anneaux factoriels. Théorème de la base fini de Hilbert. Eléments entiers sur un anneau. Théorèmes des zéros de Hilbert. Anneaux de coordonnées, corps de fonctions et anneaux locaux d'une courbe affine. Application des résultats obtenus sur la structure de l'anneau local en P au calcul de la multiplicité de P et de l'indice d'intersection en P de deux courbes affines. Variétés projectives: anneaux de coordonnées, corps de fonctions, anneaux locaux. Théorème de Bezout. — Auteur recommancé: W. Fulton, Algebraic Curves (Benjamin). — Prérequis: MAT 2224.

MAT 3523 LANGAGE DES CATEGORIES — Notions de catégorie, foncteur, transformation naturelle. Etude des catégories de modules, existence de suffisamment d'injectifs. Eléments d'algèbre homologique. Retour aux catégories en général: monomorphismes, épimorphismes, produits, coproduits, noyaux, conoyaux. Théorème d'existence de limites projectives ou inductives. Foncteurs adjoints: nombreux exemples et propriétés élémentaires. — Prérequis: MAT 2224

MAT 3563 FONDEMENTS DE LA GEOMETRIE — Critiques des axiomes d'Euclide, historique du problème des fondements, les Grundlagen der Geometrie d'Hilbert. Plans projectifs, plans affines, colinéations, élations, homologies. Paramétrisation d'um plan projectif au moyen d'un anneau ternaire de Hall, plans de translation et systèmes de Veblen-Wedderburn, plans de Mouffang et anneaux alternatifs: quasi-corps et le théorème de Désargues. Plans projectifs finis. Paramétrisation d'un plan affine (le point de vue de Artin), anneau des scalaires, signification géométrique des théorèmes de Desargues et de Pappus, le calcul des segments de Hilbert. Géométrie métrique, étude du groupe des mouvements, symétries, axiomes de Bachmann pour la géométrie absolue, géométries euclidiennes et non euclidiennes. La géométrie selon F. Klein, espaces homogènes, invariants de certains groupes classiques. —

MAT 3583 LANGAGES FORMELS — Grammaires et langages indépendants du contexte. Automates à mémoire empilée non déterministes. Classes de langages indépendants du contexte: linéaires, séquentiele, déterministes. Grammaires normales. Propriétés indécidables, ambiguité. Applications: linguistique, programmation. Grammaires et langages dépendants du contexte. Automates linéairement bornés. Propriétés de fermeture. Propriétés indécidables. — Projet de session.

MAT 3593 THEORIE DE L'INFORMATION — Définition intuitive et mathématique de l'incertitude (entropie). Notion d'information. Information conditionnelle. Signification statistique de l'information. Applications diverses: langage, langue naturelle, codage. Sources d'information: modèles markoviens. Transmission de l'information: canal discret sans mémoire, capacité d'un canal, théorème fondamental de Shannon. — Prérequis: MAT 2494 et MAT 2594.

MAT 3603 STATISTIQUES NON-PARAMETRIQUES — Statistiques ordonnées, quantiles, tests de permutations, tests basés sur les rangs, tests du type Kolmogorov-Smirnov, tests du χ^2 : tables de contingence, estimateurs non-paramétriques. Prérequis: MAT 2594.

MAT 3613 MODELES STATISTIQUES LINEAIRES — Régression linéaire à une variable et approche vectorielle du problème. Présentation de la régression dans le cas général. Etude des résidus et recherche de la 'meilleure' équation de régression. Régression multiple et introduction à l'estimation non-linéaire. Analyse de la variance à un facteur, à 2 facteurs. Analyse de la covariance. Plans d'expériences. Tests d'hypothèses. Prérequis: MAT 2594

MAT 3633 ANALYSE FONCTIONNELLE DES SYTEMES — Introduction à la notion de système. Les caractéristiques des systèmes d'informations; les supports de l'information, validités, délais de validité, erreurs, transformations. Méthodologie de l'étude du système existant: les investigations, la description. Evaluation des performances. Reformulation fonctionnelle du nouveau système: objectifs du nouveau système, méthodologie. Constitution du dossier d'analyse fonctionnelle: rubriques, fichiers; organigramme de cheminement, description des traitements, tables de décision; tests de validité, codes; volumes, fréquences, délais, sécurité, confidentialité. Prérequis: MAT 3643

MAT 3643 ANALYSE ORGANIQUE DES SYSTEMES — Définition du problème ou de l'application projetée. Cueillette des informations. Analyse des informations. Techniques de présentation. Contrôles. Implantation du système. Documentation du système. Entrée des données. Transmission des données par terminal. Banque des données. Evaluation du système.

MAT 3683 CONSTRUCTION DES COMPILATEURS — Révision des structures d'un langage. Organisation générale d'un compilateur. Analyse des expressions arithmétiques. Compilation des expressions arithmétiques. Compilation d'instructions simples. Analyse lexicale du programme source: création de dictionnaires. Analyse syntaxique: grammaires formelles, construction d'un analyseur. Génération du module objet. Détection d'erreurs, messages. Optimisation du programme objet (registres, transferts). Utilisation de langages d'écriture d'un compilateur simple. — Prérequis: MAT 2284 et MAT 2384.

MAT 3753 FONCTIONS D'UNE VARIABLE COMPLEXE — Nombres complexes. Fonctions d'une variable complexe. Limite, continuité et analycité. Dérivabilité, équations de Cauchy-Riemann. Fonctions harmoniques, courbes de niveau. Formule intégrale de Cauchy. Séries de Taylor et Laurent. Pôles. Calcul des résidus. Applications. — Prérequis: MAT 1954 ou MAT 1963.

MAT 3783 ORGANISATION APPROFONDIE D'UN ORDINATEUR — Introduction à l'étude des ordinateurs: définition et description des niveaux d'étude et rôle des différents spécialistes. Etude des notations PMS et ISP pour décrire la structure des systèmes et le fonctionnement des processeurs. Survol des principales applications (scientifiques, commerciales, de contrôle et de communications) et caractéristiques des ordinateurs qui sont utilisés dans ces différentes applications. Etude de la structure et du fonctionnement de plusieurs ordinateurs soigneusement choisis. Projet de session. Prérequis: MAT 2483

MAT 3823 ALGEBRE — Etude de situations concrètes conduisant à la découverte de certaines structures algébriques (groupes, anneaux, corps, espaces vectoriels) et aboutissant à une synthèse axiomatique. Application à la construction des nombres. — (Ce cours est destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803, 1813, 1863 et 2843.

MAT 3833 SEMINAIRE — Réflexion sur l'enseignement de la mathématique au cours du premier cycle de l'école élémentaire. Evaluation des méthodes et du matériel didactique. Rédaction et expérimentation de fiches de travail. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803, 1813, 1863, 2843, 2853 et 3823.

MAT 3843 SEMINAIRE — Réflexion sur l'enseignement de la mathématique au cours du second cycle de l'école élémentaire. Evaluation des méthodes et du matériel didactique. Rédaction et expérimentation de fiches de travail. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1803, 1813, 1863, 2843, 2853 et 3823.

MAT 3853 TELEINFORMATIQUE — Les différentes formes de télétraitement. Les canaux et les lignes de communications. Les modems, les codes et les modes de transmission, le traitement des erreurs. Le dialogue homme-machine. Les réseaux, les terminaux et les unités de contrôle des lignes et des terminaux. Le logiciel de soutien. Services offerts sur le marché. Critères de choix des composants d'un système.

MAT 3863 STRUCTURES DES INFORMATIONS II — Ce cours vise à donner aux étudiants des notions sur les techniques de programmation utilisées dans l'organisation et le traitement des informations linguistiques et graphiques et dans les systèmes de bases de données. Introduction au langage TOTAL. Prérequis: MAT 2384.

MAT 3873 ACTIVITES MATHEMATIQUES III — Etude des différents systèmes de nombres. Opérations et relations sur les nombres. Applications à la notion de mesure. — (Cours destiné aux étudiants du baccalauréat en enseignement élémentaire). — Prérequis: MAT 1873 et MAT 2873.

MAT 3893 SYSTEMES A TEMPS PARTAGE — Introduction aux systèmes à temps partagé: évolution des systèmes d'exploitation; types de systèmes à temps partagé; problèmes principaux; session à un terminal. Allocation dynamique de la mémoire; pagination et segmentation. Organisation de la mémoire centrale; communications avec les périphériques. Protection de la mémoire et du contrôle; interruptions; microprogrammation. Utilisation des processeurs et des mémoires; protection du système. Fichiers et opérations d'E/S. Mesure de la performance d'un système; fiabilité des systèmes et remise en marche. — Prérequis: MAT 2184 et MAT 2284.

MAT 3983 SIMULATION DES SYSTEMES — Modèles de systèmes. Simulation de systèmes. Simulation de systèmes continus. La dynamique industrielle. Le langage DYNAMO. Concepts stochastiques en simulation. Files d'attente. Simulation de systèmes discrets. Introduction au GPSS. Introduction à SIMPSCRIPT. Fiabilité des résultats d'une simulation. — Projet de session. — Prérequis: MAT 1284 et MAT 2494.

MAT 4000 STAGE T-4 — Quatrième stage pratique pour les étudiants du régime coopératif au Département de mathématiques.

Cours des 2e et 3e cycles

MAT 4294 PROBABILITE — Espaces de probabilité. Loi faible des grands nombres. Fonctions caractéristiques. Théorèmes de Helly. Théorèmes de la limite centrale. Lemme de Borel-Cantelli. Loi forte des grands nombres. Séries aléatoires. Théorèmes des trois séries. — Prérequis: MAT 2594 et MAT 2254. — Corequis: MAT 5244.

MAT 4394 RECHERCHE OPERATIONNELLE — Introduction au choix multicritère. Aggrégation des préférences collectives: règle de Condorcet et des amendements, théorème de Arrow: échappatoire, méthode Electre II. Programmation convexe générales: exemples, fonctions convexes, cônes avec préordre, fonctions s.c.i., polaires, lagrangiennes. Théorie du minimax, dualité. Continuité, sous-gradiant. Introduction à la programmation stochastique.

MAT 5184 ORGANISATION ET RECHERCHE DE L'INFORMATION — Notions sur le traitement des langues naturelles par ordinateurs. Analyse du contenu de l'information par des méthodes statistiques, syntaxiques et logiques. Etude des problèmes relatifs aux banques de données. Techniques d'allocation et de traitement des informations non numériques. Etudes des systèmes de questions-réponses automatiques.

MAT 5194 STATISTIQUE APPLIQUEE — Analyse en composantes principales et analyse factorielle. Applications des méthodes de régression et de corrélation multiples aux modèles économiques. Autres applications. — Prérequis: MAT 1424 et MAT 2594.

MAT 5224 THEORIE DES CATEGORIES — Foncteur adjoint. Limites inductives et projectives. Catégories abéliennes. Catégories de complexes. Homologie, Foncteurs dérivés.

MAT 5234 TOPOLOGIE ALGEBRIQUE — Propriétés élémentaires des complexes simpliciaux; subdivisions. Homologies simpliciale et singulière. Invariance. Equivalence de ces homologies dans le cas des polyèdres. Suites de Mayer-Vietoris. Applications: les espaces \mathbb{R}^n , théorèmes de points fixes, théorèmes de la courbe de Jordan.

MAT 5244 MESURE ET INTEGRATION — Mesure et intégrale sur un espace abstrait. Les espaces Lp. Mesure sur un espace produit: théorème de Radon-Nikodym. Mesure sur les espaces localement compacts.

MAT 5274 THEORIE DE L'APPROXIMATION — Rappels sur les espaces de Hilbert et les systèmes orthonormaux. Polynômes orthogonaux. Approximation uniforme par des fonctions continues. Algorithme de Remès. Bornes de l'erreur d'approximation. Convergence d'approximation. Convergence d'approximations linéaires. Théorème de Sard.

MAT 5288 THEORIE DES AUTOMATES ET DES LANGAGES FORMELS I — Alphabets et langages. Procédures et algorithmes. Les différents types de grammaires formelles. Les automates finis ordinaires, indéterministes et à deux directions. Relations des automates finis avec les langages réguliers. Les grammaires indépendantes du contexte. Les automates à mémoire empilée. Leurs relations avec les langages indépendants du contexte. Les machines de Turing. La machine de Turing universelle. Indécidabilité du problème de l'arrêt. La classe des ensembles récursifs. Relations avec les langages de type 0.

MAT 5292 PRINCIPES DE BIOSTATISTIQUE — Statistique descriptive. Probabilités. Estimation. Tests d'hypothèse. Régression er corrélation linéaires. Quelques autres problèmes traités par la statistique. (Ce cours est offert à la Faculté de médecine).

MAT 5294 TESTS D'HYPOTHESES — Rappels sur la théorie de l'estimation. Les tests d'hypothèses et le problème général de la théorie de la décision. Tests uniformément plus puissants. Tests non biaisés et applications. Invariance. Hypothèses linéaires. Principe du minimaux.

MAT 5324 ALGEBRE NON COMMUTATIVE — Rappels sur les modules, lemme de Schur et modules projectifs. Anneaux artiniens semi-simples et théorèmes de Wedderburn. Digression sur les foncteurs Ext; dimemsions projectives des modules cycliques et dimension globale. Anneaux noetheriens, dualité, anneaux aoto-injectifs et quasi-frobeniusiens.

MAT 5334 TOPOLOGIE GENERALE — Structures topologiques. Comparaison des topologies. Axiomes de séparation. Familles de filtres. Théorème de Tychonoff. Structures uniformes. Complétion. Compactification de Stone-Cech. Théorèmes de métrisabilité. Topologie sur les espaces fonctionnels.

MAT 5344 ANALYSE FONCTIONNELLE I — Espaces vectoriels topologiques. Théorème de Hahn-Banach. Théorème de l'application ouverte et du graphe fermé. Théorèmes de points fixes. Théorème de Banach-Steinhaus. Théorèmes de Krein-Mil'man et de Choquet. Dualité. Applications linéaires compactes.

MAT 5384 THEORIE DES AUTOMATES ET DES LANGAGES FORMELS II — Relations entre les automates linéairement bornés et les langages dépendant du contexte. Lois de composition sur les langages. Fermeture sous les lois de composition et les applications. Bornes de temps et d'espace dans les machines de Turing. Hiérarchies. Les automates à mémoire empilée déterminisme. Les automates à piles. Problèmes décidables et indécidables dans les grammaires et les automates. Prérequis: MAT 5283.

MAT 5394 THEORIE DE LA DECISION — Concepts de base d'un problème de décision statistique. Théorie de l'utilité. Notions d'admissibilité et de complétude. Théorie de l'hyper-plan séparateur et théorie du Minimax. Classes essentiellement complètes de règles de décisions et statistiques exhaustives. Règles de décision invariantes et problèmes de décision multiples.

MAT 5424 THEORIE DES CORPS — Généralités sur les corps. Théorie de Galois. Introduction à la théorie des corps valués. Introduction aux crops p-adiques.

MAT 5434 GEOMETRIE COMBINATOIRE — Géométries combinatoires et treillis géométriques; bases, dépendance et circuits; exemples classiques; géométrie simpliciale; fonctions semi-modulaires; morphismes et morphismes forts, fonctions de Möbieus d'un treillis géométriques. Applications diverses.

MAT 5444 ANALYSE FONCTIONNELLE II

MAT 5494 SERIES CHRONOLOGIQUES — Processus stochastiques (généralités). Description et caractéristiques des séries chronologiques. Transformées de Fourier. Analyse statistique des séries chronologiques. Analyse spectrale des processus linéaires. Lissage des estimateurs spectraux.

MAT 5584 FIABILITE DES SYSTEMES — Détection et diagnostic des fautes de mécanolde dans les ordinateurs: principes de base, hypothèses et modèles; génération de tests pour les circuits combinatoires et séquentiels; sélection d'ensembles minima de tests; simulation de fautes; dictionnaires. Détection d'erreurs dues à des fautes de mécanolde; implantation des circuits de détection d'erreurs. Ordinateurs autoréparants. Détection d'erreurs dans les systèmes de programmation. Etude de problèmes de recherche. — Prérequis: MAT 1323 et MAT 2483.

MAT 5594 METHODES NON PARAMETRIQUES — Statistiques d'ordre. Etude des tests suivants: X², Kolmogorov-Smirnov, Van der Waerden, Brown-Mood, Wilcoxon-Mann-Whitney, Kruskal-Wallis, Ansari-Bradley. Mesures non paramétriques de la corrélation et brève étude de quelques tests associés. Le problème des égalités.

MAT 5684 TRAITEMENTS DES IMAGES ET RECONNAISSANCE DES FORMES — Codage des images. Approximation des images. Algorithme du perceptron. Relation d'équivalence des formes idéales et des formes troublées. Algorithmes classiques en reconnaissance des formes. Utilisation des techniques statistiques, adaptatives, heuristiques. Compression des données. Opérateurs invariants sur les formes. Problèmes d'extraction des caractéristiques. Les langages de description des formes. Application à l'analyse des données en biomédecine. Discussion sur des projets spécifiques en reconnaissance des formes, par exemple: traitement des photos de satellites de reconnaissance sur les ressources terrestres.

MAT 5694 MODELES DE PROBABILITES APPLIQUEES

MAT 5784 ANALYSE SYNTAXIQUE — Langages formels: génération et reconnaissance. Notion de structure syntaxique. Analyse syntaxique des langages hors-contexte. Systèmes d'équations, relations et graphes associés, formes normales. Analyse descendante, analyse ascendante. Problème du retour en arrière. Déterminisme. Langages LL(k), LR(k), de précédence, à contexte borné. Génération automatique d'analyseurs. Mise au point de grammaires pour l'analyse des langages de programmation. Compilation dirigée par la syntaxe. Détection des erreurs syntaxiques. Analyse des langages de type 0, de type 1. Analyse syntaxique des langues naturelles. — Prérequis: MAT 3583 et MAT 3683.

MAT 5984 SIMULATION ET MODELES — Revue des techniques de simulation. Etude des quelques langages de simulation. Schémas expérimentaux et évaluation des résultats d'une simulation. Applications à la simulation des files d'attente, des problèmes de stock, de trafic; simulation des systèmes de programmation. Projet.

PHYSIOUE

Cours de ler cycle

PHY 1000 STAGE T-1 — Premier stage pratique pour les étudiants du régime coopératif au Département de physique.

PHY 1113 MECANIQUE I — Cours de transition offert exclusivement en 1977-78 à l'intention des étudiants qui seraient affectés par le remplacement de la séquence PHY-1104, 1122, 2113 par PHY-1114. Les étudiants concernés feront la séquence PHY-1122, 1113, 2114. Son contenu est semblable à PHY-1114 amputé des notions de relativité restreinte.

PHY 1114 MECANIQUE I — Vecteurs, invariance galiléenne, dynamique d'une particule, conservation de l'énergie et de la quantité de mouvement. Relativité restreinte: vitesse de la lumière, transformation de Lorentz, dynamique relativiste. Ouvrage recommandé: Mécanique, Cours de physique (Berkeley) vol. 1 (A. Colin)

PHY 1212 THERMODYNAMIQUE — Cours d'introduction aux phénomènes thermiques et de thermodynamique classique. — Systèmes thermodynamiques. Première et deuxième loi de la thermodynamique. La notion de température. L'entropie. Les potentiels thermodynamiques. Applications. Equilibre de phase.

PHY 1312 OPTIQUE — Optique géométrique. Nature ondulatoire de la lumière. Interférence et diffraction. Polarisation. Instruments d'optique. Résolution. Ce cours d'introduction à l'optique géométrique et physique met l'accent sur les propriétés physiques de la lumière et des phénomènes ondulatoires, l'instrumentation, leurs limites et leurs utilisations expérimentales.

PHY 1404 ELECTRICITE ET MAGNETISME (3-1) — Electrostatique, potentiel électrique, champ électrique autour de conducteurs et dans la matière. Courant électrique, champs des charges en mouvement, champ magnétique. Induction électromagnétique. Champs électrique et magnétique dans la matière. — Ouvrage recommandé: Electricité et magnétisme, Cours de physique (Berkeley) vol. II (Armand Colin).

PHY 1423 INSTRUMENTATION ELECTRONIQUE — Circuits électriques en courant continu et alternatif. Transducteurs. Diode et transistor. Amplification. Rétroaction. Amplificateurs opérationnels. Bruit. Appareils de mesure et instrumentation électronique. Ce cours est destiné aux étudiants de chimie et comporte environ 6 séances de travaux pratiques. Auteur recommandé: A.J. Diefenderfer. Principles of Electronic Instrumentation et Basic Techniques in Electronic Instrumentation.

PHY 1482 CIRCUITS ELECTRIQUES (2-1) — Circuits à courant continu et alternatif: loi d'Ohm, lois de Kirchhoff, méthode des boucles, méthode des noeuds, théorème de Thévenin et de Norton, transfert de puissance maximum, ponts. Régimes transitoire et sinusoval des circuits RC, RL et RLC. Résonance. (Les circuits à courant alternatif sont traités à l'aide de la notation complexe). Base de la théorie des semi-conducteurs et des transistors. — Auteur recommandé: J. J. Brophy, Basic Electronics for Scientists (McGraw-Hill).

PHY 1912 TRAVAUX PRATIQUES DE PHYSIQUE I

PHY 1932 TRAVAUX PRATIQUES DE PHYSIQUE II — Introduction à la physique expérimentale et à l'instrumentation. Expériences de mécanique, d'optique, de circuits électriques et électroniques, d'électromagnétisme et de thermodynamique. Ces cours comportent également une initiation à la rédaction de rapports scientifiques, à l'interprétation des données et à l'évaluation des erreurs expérimentales.

PHY 2000 STAGE T-2 — Deuxième stage pratique pour les étudiants du régime coopératif au Département de physique.

PHY 2063 et 2083 DIDACTIQUE DE LA PHYSIQUE I ET II — (Ces deux cours sont à l'intention des étudiants au B.Sc., physique-pédagogie).

PHY 2114 MECANIQUE II — Revue de mécanique newtonienne. L'oscillateur harmonique. Equations de Lagrange dérivées du principe de l'Alembert; applications simples. Problème de deux corps sous l'influence d'une force centrale. Diffusion dans un champ central. Cinématique des rigides. Equations du mouvement d'un rigide. Applications: mouvement libre d'un rigide, toupie symétrique, précession d'un moment magnétique dans un champ magnétique. — Autreur recommandé: H. Goldstein, Mécanique classique (P.U.F.).

PHY 2224 PHYSIQUE STATISTIQUE — Introduction, états quantiques, solution d'un système élémentaire, hypothèses fondamentales, systèmes en contact thermique et diffusif, facteurs de Gibbs et de Boltzmann, identité thermodynamique, température thermodynamique, fonctions de distribution de bosons et de fermions, particules libres, gaz parfait mono-atomique, calculs numériques pour un gaz parfait. Théorie cinétique des gaz applications des distributions de Fermi-Dirac, distribution de Planck

pour les photons, phonons, potentiel thermodynamique, enthalpie, changement de phase, réactions à l'équilibre, distribution de Poisson, applications. Equation de Boltzmann. — Auteur recommandé: C. Kittel, Thermal Physics (Wiley).

PHY 2302 OPTIQUE PHYSIQUE (2-0) — Principe de Huyghens; interférence par division de la surface d'onde: expérience de Young, source ponctuelle, cohérence, diffraction de Fraunhofer, résolution des spectrographes à prisme, télescope, microscope, interférence de N fentes, réseaux, dispersion et résolution, diffraction de Fresnel, réseau zoné. Interférence par division d'amplitude: interféromètre de Michelson, transformation de Fourier, filtres, interféromètre de Fabry-Pérot. — Auteru recommandé: M.V. Klein, Optics (Wiley).

PHY 2323 THEORIE DES ONDES — L'équation d'onde et méthodes de solution. Analyse de Fourier des phénomènes ondulatoires. Transport dynamique dans les ondes. Dispersion. Diffraction. Limite géométrique et l'équation de l'eikonal.

Tout en complétant la formation aux phénomènes ondulatoires, ce cours met l'emphase sur l'utilisation des tachniques de la physique mathématique et théorique.

PHY 2353 PHYSIQUE QUANTIQUE (3-0) — Limites de la théorie classique. Découverte de la constante de Planck. Dualité onde-particule. Quantification des niveaux d'énergie. Le photon. Particules matérielles. Le principe d'incertitude. Le principe de superposition. Introduction à la spectroscopie atomique. Le principe d'exclusion. L'atome de Bohr. Introduction à l'équation de Schrödinger et solutions de quelques problèmes simples. Le principe de correspondance. Le spin.

PHY 2442 GEOPHYSIQUE (2-0) — Premier modèle terrestre basé sur les densités. Géochronologie; datation isotopique. Seismologie et structure interne de la terre. Gravimétrie et forme du globe. Géomagnétisme; influences internes et externes. Aperçus qualitatifs sur le paléomagnétisme et la tectonique des plaques.

PHY 2482 ASTROPHYSIQUE (2-0) — Observations photométriques: magnitude, indice des couleurs, rayonnement du corps noir et température. Observations spectroscopiques: classification spectrale, diagramme H-R, température spectrale, vitesse radiale. Etoiles binaires, variables, novae, matière intrestellaire, nucléogénèse. — Auteur recommandé: T.L. Swihart, Astrophysics ans Stellar Astronomy (Wiley).

PHY 2514 MECANIQUE QUANTIQUE I — Rappel et discussion des idées fondamentales de la physique quantique. Elaboration du langage et des outils mathématiques nécessaires à l'expression générale des postulats fondamentaux de la mécanique quantique. Application à des systèmes simples: spin, systèmes à 2 niveaux, l'oscillateur harmonique. Discussion d'exemples physiques. Propriétés générales des momenta cinétiques en mécanique quantique. L'atome d'hydrogène. Auteur recommandé: CohenTannoudji, Die et Laloë, Mécanique quantique, tome I (Hermann 1973).

PHY 2483 ELECTRONIQUE (3-0) — Blocs d'alimentation. Transistors à 2 jonctions. Transistors à effet de champ. Circuits équivalents d'amplificateurs. Réponse en fréquence des amplificateurs; régime stationnaire et régime transitoire. Les amplificateurs différentiels comme base des circuits intégrés. L'effet de la contre-réaction sur les caractéristiques des amplificateurs. Mesure de fiables signaux. Bruits. Oscillateurs sinusofdaux. Oscillaterus non sinusofdaux. Multivibrateurs. Circuits logiques. — Auteur reocmmandé: Schelling & Belove, Electronic Circuits, Discrete and Integrated (McGraw-Hill).

PHY 2913 TRAVAUX PRATIQUES DE PHYSIQUE III -

PHY 2933 TRAVAUX PRATIQUES DE PHYSIQUE IV - Ces 2 cours sont les premiers d'une suite de 4 cours de physique expérimentale avancée. Ces 4 cours se distinguent par un niveau croissant de difficulté théorique, expérimentale et technique plutôt que par une spécialisation à des domaines spécifiques de la physique expérimentale. Tout en favorisant la compréhension et la concrétisation des phénomènes fondamentaux de la physique, ils sont orientés vers l'apprentissage de techniques expérimentales variées. Chacum de ces cours offre au choix de l'étudiant une dizaine d'expériences. La banque d'expériences proposées est périodiquement renouvelée et elle est orientée vers un grand nombre de spécialités différentes de la physique contemporaine, tant d'un point de vue fondamental qu'appliquée. Ainsi, plusieurs expériences ont comme objectif de mettre en évidence les phénomènes fondamentaux, tels que les effets quantiques de dualité, de spin, de niveaux d'énergie... etc., tandis que d'autres expériences mettent plutôt l'accès sur les techniques et les applications: les microondes, les ultrasons, l'électronique moderne, le vide, les basses températures, l'instrumentation... etc. Du point de vue des spécialités, plusieurs expériences mettent en cause les grands domaines de la physique atomique et nucléaire, de la physique de la matière condensée, de la thermodynamique, de l'optique et de l'électromagnétisme.

PHY 2953 BLECTRONIQUE ET INSTRUMENTATION PHYSIQUE — Leçons et laboratoires d'électronique et d'instrumentation physique à l'intention des étudiants de chimie. Le cours est constitué de leçons pratiques, de laboratoires d'électronique digitale et analogique et d'un choix de quelques expériences de physique tirées des cours de travaux pratiques du programme de physique. Il a comme objectif de familiariser les étudiants avec l'instrumentation électronique et physique de la recherche expérimentale. Prérequis: PHY 1423.

PHY 3000 STAGE T-3 — Troisième stage pratique pour les étudiants du régime coopératif au Département de physique.

PHY 3132 MECANIQUE III (2-0) — Principe variationnel et équations de Lagrange. Equations de Hamilton. Parenthèses de Poisson. Petites oscillations. Equations de Lagrange dans les milieux continus. Théorie classique des champs. — Auteur recommandé: H. Goldstein, Mécanique classique (P.U.F.).

PHY 3303 PHYSIQUE ATOMIQUE ET MOLECULAIRE (3-0) — Spectres d'atomes à un ou deux électrons, tableau périodique, moment cinétique total, couplage spin-orbite et structure fine, spectres atomiques et règle de Hund, règles de sélection pour les transitions optiques, parité, effet Zeeman, effet Stark, forces chimiques, valences, spectres moléculaires, vibration, effet Raman, spectres continus et spectres diffus, propriétés électriques et magnétiques des atomes et molécules, ionisation, polarisation, moments multipolaires. — Auteur recommandé: V.N. Kondratiev, La structure des Atomes et des Molécules (Masson).

PHY 3424 THEORIE ELECTROMAGNETIQUE — Champs multipolaires, équations de Maxwell, ondes électromagnétiques, vecteurs de Poynting, réflexion, guides d'ondes, potentiels de Liénard-Wiechert, radiation dipolaire et quadrupolaire, antennes, dispersion des ondes électromagnétiques dans les gaz, les liquides et les solides, électrodynamique relativiste. — Auteur recommandé: J. B. Marion, Classical Electromagnetic Radiation (Academic Press).

PHY 3473 PHYSIQUE DES PLASMAS (3-0) — Trajectoires de particules chargées dans un champ électrique et magnétique uniforme ou non uniforme. Phénomènes électriques dans les gaz: ionisation et claquage. Effets de la pression, des champs électrique et magnétique; espace de Faraday, courbes de Paschen, température électronique, variation temporelle du champ électrique et magnétique. Interaction radiation-matière. Notions fondamentales de la spectroscopie atomique. Probabilité de transition entre différents états. Processus atomiques dans un plasma (collisions inélastiques); excitation, ionisation, recombinaison, absorption, photo-ionisation. Equilibres thermodynamique et statistique, température et densité des électrons.

— Auteurs recommandés: Handbuch der Physik, Vol. XXII; J. L. Delcroix, Introduction à la théorie des gaz ionisés (Dunod); E. Nasser, Fundementals of Gaseous Ionization (Wiley-Interscience).

PHY 3513 MECANIQUE QUANTIQUE II — Notions sur la théorie quantique de la diffusion. Le spin. Composition de moments cinétiques. Théorie des perturbations et application aux structures fines de l'atome hydrogène. Systèmes de particules identiques. Auteur recommandé: Cohen-Tannoudji, Die et Laloë, Mécanique quantique, tome II, (Hermann 1973).

PHY 3603 PHYSIQUE NUCLEAIRE (3-0) — Concepts de base. Modèles nucléaires. Noyaux stables et noyaux radioactifs. Désintégrations alpha, bêta et gamma. Interactions des rayonnements nucléaires avec la matière. Réactions nucléaires. Fusions et fission. Atomes mésoniques. Lois de conservation et symétries. — Auteur recommandé: W. E. Meyerhof, Eléments de physique nucléaire (Dunod).

PHY 3663 PHYSIQUE DES PARTICULES ELEMENTAIRES (3-0) — Cours de culture, facultatif et à contenu variable. Certains des sujets suivants y sont discutés: classification des interactions. Lois de conservation. Nombres quantiques additifs. Isospin. Invariance relativiste. Détermination du spin et de l'isospin des particules. Parité, renversement du temps et conjugaison de charge. Etats liés et résonances. Equation de Dirac. Symétrie unitaire de l'interaction forte.

PHY 3713 PHYSIQUE DU SOLIDE (3-0) — Energie de liaison dans les solides. Structures cristallines: symétries, réseau cristallin, réseau réciproque et rayons-X. Les phonons, leur spectre de dispersion et leur influence sur les propriétés des cristaux. Thermostatique des électrons libres, effets de champs électromagnétiques sur les métaux, supraconductibilité. Théorie des bandes et masse effective. Thermostatique des semi-conducteurs, leur conductibilité électrique. Propriétés diélectriques et magnétiques des solides. — Auteurs recommandés: J. S. Blakemore, Solide State Physics (Saunders); C. Kittel, Introduction to Solid State Physics, 4e édition (Wiley).

PHY 3813 PHYSIQUE MATHEMATIQUE (3-0) — Revue d'algèbre et d'analyse vectorielle. Transformations linéaires. Matrices. Tenseurs. — Introduction aux fonctions d'une variable complexe. Fonctions analytiques. Représentation de Cauchy. Séries de Laurent. Calcul des résidus. Evaluation d'intégrales. — Equations différentielles et fonctions spéciales. Fonctions de Legendre et de Bessel. Solution en série. Classification des points singuliers. Equation et fonction hypergéométrique. Problème de Sturm-Liouville.

PHY 3913 TRAVAUX PRATIQUES V -

PHY 3933 TRAVAUX PRATIQUES DE PHYSIQUE VI $lue{}$ (Voir la description de PHY 2913 et PHY 2933).

PHY 4000 STAGE T-4 — Quatrième stage pratique pour les étudiants au régime coopératif au Département de physique.

Cours des 2e et 3e cycles

PHY 5001 SEMINAIRES

PHY 5011 SEMINAIRES

PHY 5021 SEMINAIRES

Chaque étudiant, aux 2e et 3e cycles, doit faire à chaque année de scolarité, un exposé d'une heure sur ses travaux de recherches en plus de prendre une part active aux séminaires et colloques du Département de physique.

PHY 5143 THEORIE DE LA DIFFUSION — Développement en ondes partielles, sections efficaces, analyse en phases. Théorème optique, diagramme d'Argand, longueur de diffusion etc.; modèle optique. Formalisme des équations intégrales, fonctions de Green, approximation de Born. Matrice T, diffusion multiple, problèmes à plusieurs voies. Diffusion coulombienne. Inclusion du spin, potentiels non sphériques. Diffusion de résonance. — Auteur recommandé: J.R. Taylor, Scattering Theory (Wiley)

PHY 5183 THEORIE DES GROUPES (3-0) — Définitions et nomenclature, représentations des groupes, théorèmes d'orthogonalité des représentations et des caractères, réduction des représentations, applications à la physique. — Auteur recommandé: Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill).

- PHY 5203 PHYSIQUE STATISTIQUE — Thermodynamique statistique, potentiel thermodynamique. Théorie cinétique, équation de Boltzmann, phénomène de transport dans les gaz. Mécanique statistique, ensembles thermodynamiques, fonctions de partition, gaz parfâits et fluctuations. Mécanique statistique quantique, matrice densité, gaz idéal de fermions et de bosons. Distribution de Fermi-Dirac et de Bose Einstein. Condensation de Bose-Einstein. Gaz réels, développement de viriel, équation de Van der Waals. Transition de phases, ordre de la transition, point critique, divergences près du point critique. Transitions de phases de seconde espèce, théorie de Landau. Magnétisme, modèle d'Ising, théorie des champs moyens. Auteurs recommandés: K. Huang, Statistical Mechanics (Wiley). L. LANDAU et E. LIFCHITZ, Physique statistique (MIR).

PHY 5323 PROBLEME A "N" CORPS — L'équation de Schrodinger et la deuxième quantification, champs, bosons, fermions. Fonctions de Green, diagrammes de Feynman, théorème de Goldstone. Approximation Hartree-Fock, équation de Bethe-Salpeter, gaz d'électrons. Systèmes à températures finies vs température zéro, théorème de Wick. — Auteurs recommandés: Felter & Walecka, Quantum Theory of Many Particle Systems (McGraw-Hill). Schultz, Quantum Field Theory and the Many-Body Problem (Gordon and Breach).

PHY 5343 PHYSIQUE ATOMIQUE ET MOLECULAIRE — Atomes à un électron. Effet Stark dans l'hydrogène. Atomes à deux électrons. Interaction spin-orbite. Atomes à trois électrons. Molécule d'hydrogène. Méthode de Heitler-London et des orbitales moléculaires. Interaction vibration-rotation. Interaction des configurations moléculaires.

PHY 5423 ELECTRODYNAMIQUE CLASSIQUE — Les principes et concepts de l'électrodynamique sont mis au service du physicien. Concepts de base; techniques de solutions des champs statiques; la quasistatique et l'électromécanique des systèmes discrets ou continus, la ligne de transmission et le concept d'impédance; la dynamique des ondes en milieux non-dispersifs ou dispersifs tels les diélectriques, le magnétoplasma et les supraconducteurs en reliant le tout au concept d'impédance; la dynamique des particules dans un contexte relativiste appliquée au mouvement des charges dans les champs statiques tel le problème de confinement, aux collisions entre charges tel le freinage dans la matière ainsi qu'à la radiation par les charges accélérées tel la radiation synchroton. Auteur recommandé: J.D. Jackson, Classical Electrodynamics.

PHY 5483 PHYSIQUE DES PLASMAS — Equilibre thermodynamique local, équation de Saha, intensité de la radiation, force d'oscillateur, profil de raies, élargissement Doppler et Stark, radiation continue, mesure de température et de densité. Réactions à haute température.

PHY 5523 MECANIQUE QUANTIQUE I — Revue de certains concepts élémentaires: mouvement d'une particule en mécanique quantique, potentiels à une dimension, moment cinétique et potentiel central, atome d'hydrogène. — Sujets approfondis: équation du mouvement des opérateurs, diffusion par un potentiel, théorie de la perturbation pour un état stationnaire, théorie de la perturbation dépendant du temps, le système de spin }, addition des moments cinétiques, isospin, particules identiques. Auteur recommandé: Baym, Lectures on Quantum Mechanics (Benjamin).

PHY 5533 MECANIQUE QUANTIQUE II — Interaction de la radiation avec la matière (quantification du champ de rediation, radiation dipolaire et quadruplaire), radiation multipolaire, seconde quantification, atomes: atomes à 2 électrons, approximation de Hartree et Hartree-Fock, particules de spin zéro: antiparticules et equation de Klein-Gordon, équation de Dirac. — Auteur recommandé: Baym, Lectures on Quantum Mechanics (Benjamin).

PHY 5703 PHYSIQUE DU SOLIDE — Structure et symétries cristallines et la théorie des groupes. Les états électroniques: méthodes de calcul des structures de bandes et étude des phénomènes électroniques associées aux isolants, aux semiconducteurs et aux impuretés. Introduction aux phénomènes de transport. — Auteurs recommandés: W.A. Harrison, Solid State Theory (McGraw-Hill). J.M. Ziman, Principles of the Theory of Solids 2e ed., (Cambridge).

PHY 5723 THEORIE DU SOLIDE — Introduction au concept des quasi-particules. La seconde quantification appliquée au gaz d'électron, aux vibrations atomiques et aux magnons. Théorie de l'électron de Bloch. Couplage électron-phonon et supraconductibilité. Le phénomène de conduction dans les métaux. Traitement perturbatif quantique des interactions. — Auteur recommandé: P.A. Taylor, A Quantum Approach to the Solid State (prentice-Hall).

PHY 5753 PHENOMENES DE TRANSPORT ET PROPRIETES OPTIQUES DES SOLIDES — Equation de Boltzmann, temps de relaxation, phénomènes de transport: diffusion, mobilité, effets thermoélectriques et galvanomagnétiques. — Optique: absorption, relation de Kramers-Kronig, mécanismes de recombinaison, laser semiconducteur, modulation de la réflexion. Effets dans des champs magnétiques intenses.

PHY 5773 PROPRIETES DES SOLIDES AUX BASSES TEMPERATURES — Aspects théoriques et exprérimentaux des superfluides: He superfluide, modèle à deux fluides, excitations élémentaires (phonons, rotons, lignes de tourbillons), film superfluide, mélanges He - He, théorie du liquide de Fermi, He à basse température, phases nouvelles (superfluides) de 1'3He à ultra basse température. — Notions de la supraconductivité, supraconducteurs de la première et deuxième espèce, propriétés macroscopiques, théorie microscopique (BCS, Eliashberg), alliages supraconducteurs, effet tunnel, effet Josephson. — Théories microscopiques du magnétisme, modèle d'Heisenberg approximations de champ moyen et solutions exactes du modèle d'Ising, ondes de spins, les paramagnons, la coexistence de la supra conductivité et du magnétisme, effet Kondo.

PHY 5823 METHODES DE PHYSIQUE THEORIQUE — Théorie des variables complexes, équations différentielles de la physique des continua, méthode de la séparation des variables, points singuliers, conditions de frontières, théorie des groupes, rôle des symétries, solutions par la méthode de la fonction de Green, équation d'Helmholtz, équation de l'onde scalaire et équation de la diffusion, développement en fonctions propres. Equation du mouvement d'Heisenberg en première quantification, fonctions de Green dynamiques.