

Faculté des sciences

Annuaire 1999-2000

(L'annuaire de la Faculté des sciences constitue le cahier 8 de l'annuaire général de l'Université de Sherbrooke. En conséquence, les pages sont numérotées à compter de 8-1.)

Table des matières

Direction de la Faculté	
Le personnel	
Baccalauréat en biochimie	
Baccalauréat en biologie	
Mineure en biologie	
Baccalauréat en chimie	
Mineure en chimie	
Baccalauréat en informatique	11
Baccalauréat en informatique de gestion	12
Baccalauréat en mathématiques	13
Mineure en mathématiques	15
Baccalauréat en physique	15
Mineure en physique	16
Maîtrise en biologie	17
Maîtrise en chimie	18
Maîtrise en environnement	18
Maîtrise en génie logiciel	. 20
Maîtrise en informatique	21
Maîtrise en mathématiques	. 21
Maîtrise en physique	22
Doctorat en biologie	23
Doctorat en chimie	23
Doctorat en mathématiques	24
Doctorat en physique	25
Diplôme de 2e cycle de gestion de l'environnement	25
Microprogramme de 2e cycle de vérification environnementale	26
Description des activités pédagogiques	
Calendrier universitaire	72

Pour tout renseignement concernant les PROGRAMMES, s'adresser à :

Faculté des sciences

Université de Sherbrooke Sherbrooke (Québec) CANADA J1K 2R1 (819) 821-7008 (téléphoné) (819) 821-7921 (télécopieur) sciences@courrier.usherb.ca (adresse électronique)

Pour tout renseignement concernant l'ADMISSION ou l'INSCRIPTION, s'adresser au :

Bureau du registraire

Université de Sherbrooke Sherbrooke (Québec) CANADA J1K 2R1 (819) 821-7687 (téléphone) 1-800-267-8337 (ligne sans frais) (819) 821-7966 (télécopieur) information@rourrier usherb ca ladresse

information@courrier.usherb.ca (adresse électronique)

http://www.usherb.ca (site Internet)

Les renseignements publiés dans ce document étaient à jour le 1° mai 1999. L'Université se réserve le droit de modifier ses règlements et programmes sans préavis.

Faculté des sciences

Direction de la Faculté

COMITÉ EXÉCUTIF

Doven

Jean GOULET

Vice-doven

JeanVAILLANCOURT

Sacrátaire

Pierre BÉCHARD

DIRECTRICE ET DIRECTEURS DES DÉPARTEMENTS

Département de biologie : Claude DÉRY
Département de chimie : Carmel JOLICOEUR
Département de mathématiques et
d'informatique : Reine GAGNON
Département de physique : Mario POIRIER

CONSEIL

Les membres du Comité exécutif auxquels s'ajoutent les membres suivants :

Marcel BASTIN, directeur du programme de baccalauréat en bio-

Maryse BERTHIAUME, étudiante en biologie, 1° cycle Mélanie CORDEAU, étudiante en biochimie, 1° cycle Mathieu DESCHAMPS, étudiant en physique, 1° cycle Jean-Guy DION, professeur au Département de mathématiques et d'informatique

Jacques GIGUÉRE, professeur au Département de chimie Denis MORRIS, professeur au Département de physique Abdelouahab SEDEKI, étudiant en physique, 3° cycle Alexandre TELNOFF, étudiant en chimie, 1° cycle Donald THOMAS, professeur au Département de biologie

COMITÉ DES ÉTUDES SUPÉRIEURES

Jean VAILLANCOURT, président Khalid BEN AMINE Abdelhamid BENCHAKROUN Claude BOURBONNAIS Gilles GRENIER Ernest MONGA Yué ZHAO

COMITÉ D'ADMISSION

Pierre BÉCHARD, président Éveline DE MÉDICIS Claude DÉRY Gérard HOUDEVILLE Andrzej LASIA David SÉNÉCHAL.

SECRÉTAIRE ADMINISTRATIVE

Francine CÔTÉ

Personnel professionnel

Daniel AUGER
Michel MONTPETIT
Judith VIEN

Personnel de soutien

Gaétane BÉLIVEAU-LESSARD Louise CRÊTE Denise DIONNE
Huguette DRAPEAU-LEVESQUE
Muguette LAFLAMME
Angèle LALIBERTÉ
Céline LANGEVIN
Denis MORENCY
André NOËL
Lise PÉPIN-CROTEAU
Denis POULIN
Jules ROUSSEAU

Chargées et chargés de cours

Frédéric BEAULIEU Serge CABANA Jean-François COMEAU Paul-André DASTOUS Réjean DE LADURANTAYE Frérédic DUTIL Jean-Paul LACOURSIÈRE Yves LAUZIÈRE Pierre-François MERCURE Marc J. OLIVIER Pierre RENAUD Jean ROBERGE Nancy RONDEAU Bénédicte THÉRIEN Raymond VAN COILLIE Alain WEBSTER

MÉDAILLES FERNAND-SEGUIN

Juin 1998
Carl BERTHELETTE (chimie)
François DESCHENES (informatique)
Mario LAMBERT (mathématiques)
Hugo TOUCHETTE (physique)
Mélanie VIAU (biologie)

MÉDAILLE VIANNEY-CÔTÉ

Martin FONTAINE (informatique de gestion)

Le personnel

DÉPARTEMENT DE BIOLOGIE

Professeure et professeurs titulaires

ANSSEAU, Colette, L.Sc. (botanique) (Louvain), M.Sc., Ph.D. (écologie végétale) (Laval) BEAUDOIN, Adrien, B.Sc. (biologie) (Sherbrooke), D.Sc. (Laval)

BEAUDOIN, Adrien, B.Sc. (biologie) (Sherbrooke), D.Sc. (Laval) BEAUMONT, Gaston, B.Sc.A., M.Sc., D.Sc. (phytologie) (Laval) BECHARD, Pierre, B.Sc., M.Sc. (biologie) (Sherbrooke), Ph.D. (microbiologie) (McGill)

BERGERON, Jean-Marie, B.Sc. (biologie) (Sherbrooke), Ph.D. (Manitoba)

BRZEZINSKI, Ryszard, M.Sc., Ph.D. (Varsovie)
COULOMBE, Benoît, B.Sc. (biochimie), M.Sc., Ph.D. (biologie moléculaire) (Montréal)

CYR, André, B.Sc., M.Sc. (biologie) (Montréal), Ph.D. (Saarbruecken) DÉRY, Claude, B.Sc., M.Sc. (biologie), Ph.D. (microbiologie) (Sherbrooke)

FESTA-BIANCHET, Marco, B.Sc., M.Sc. (zoologie) (Alberta), Ph.D. (écologie du comportement) (Calgary)
GRENIER, Gilles, B.Sc. (biologie), Ph.D. (Leval)
LEBEL, Denis, B.Sc. (biologie) (Sherbrooke), M.Sc. (microbiologie

LEBEL, Denis, B.Sc. (biologie) (Sherbrooke), M.Sc. (microbiologie et immunologie) (Montréal), Ph.D. (physiologie) (Sherbrooke) MATTON, Pierre, L.Ph. (Montréal), M.Sc. (Fordham), Ph.D. (biolo-

gie) (Ottawa) ROBIN, Jean, B.Péd., L.E.S., B.Sc., M.Sc. (biologie), Ph.D. (microbiologie) (Sherbrooke) THOMAS, Donald W., B.Sc. (N.B.), M.Sc. (biologie) (Carleton), Ph.D. (zoologie) (Aberdeen)

Professeure et professeurs agrégés

BEAULIEU, Carole, B.Sc. (biologie) (UQAR), M.Sc., Ph.D. (biologie végétale) (Laval)

BLOŬIN, Richard, B.Sc. (biologie médicale) (UQTR), Ph.D. (biologie cellulaire et moléculaire) (Laval)

SHIPLEY, J. William, B.Sc. (biologie) (Bishop's), Ph.D. (biologie) (Ottawa)

TALBOT, Brian, B.Sc. (Bath University of Technology), Ph.D. (biochimie) (Calgary)

Professeurs adjoints

BRADLEY, Robert, B.Sc. (agriculture), M.Sc., Ph.D. (écologie) (McGill)

GAUDREAU, Luc, B.Sc. (biologie) (Moncton), Ph.D. (biologie) (Sherbrooke)

Chargées et chargés de cours

BENREZZAK, Ouhida
BOUCHARD, Chantal
BROUILLETTE, Suzanne
CHAILLER, Pierre
CÖTÉ, Mylene
FINÉS, Philippe
GAUTHIER, Marc
LAFLAMME, Liette
LEROUX, Carmelle
MARTIN, Gilbert
PIROUZI, Peivand
THÉRIAULT, Andrée
THÉRIAULT, Christine

Personnel professionnel

BOULANGER, Carole GRONDIN, Gilles P. MACLEAN, Sheila PARADIS, Daniel

Personnel de soutien

BERGERON, Denyse DIONNE, Lucie FRASER, Claude LALONDE, Jean-Marc LANDRY, Nicole MARIER, Jean-Pierre MARTEL, Madeleine MERCIER, Bertrand PAQUET, Francine PROTEAU, Luce RODRIGUE, Alice THÉRIAULT, Louis-Marie VANASSE. Nicole

DÉPARTEMENT DE CHIMIE

Professeurs titulaires

BANDRAUK, André Dieter, B.Sc. (Loyola), M.Sc. (M.I.T.), Ph.D. (chimie) (McMaster)

DESLONGCHAMPS, Pierre, B.Sc. (chimie) (Montréal), Ph.D. (Nouveau-Brunswick)

GIGUÈRE, Jacques, B.Sc. (physique) (Montréal), M.Sc. (chimie) (Sherbrooke), Ph.D. (Minnesota)

HARVEY, Pierre, B.Sc., (Montréal), Ph.D. (McGill)
JOLICOEUR, Carmel, B.Sc., Ph.D. (chimie) (Sherbrooke)
LACELLE, Serge, B.Sc. (biochimie) (Ottawa), Ph.D. (chimie) (lowa

State)
LASIA, Andrzej, M.Sc. (chimie), Ph.D. (électrochimie) (Varsovie)

LESSARD, Jean, B.Sc., D.Sc. (chimie) (Laval) MÉNARD, Hugues, B.Sc., Ph.D. (chimie) (Sherbrooke) RUEST, Luc, B.Sc. (Laval), Dipl.Ec.Norm.Sup. (Québec), D.Sc. (Laval)

Professeure et professeurs agrégés

BRISARD, Gessie, B.Sc. (biochimie) (Ottawa), B.Sc., M.Sc., Ph.D. (chimie) (Sherbrooke)

DORY, Yves, D.U.T. (chimie), M. chimie (Rennes), Ph.D. (chimie organique) (Southampton)

JERKIEWICZ, Gregory, M. génie chimique (Gdansk), Ph.D. (chimie) (Ottawa)

ROWNTREE, Paul, B.Sc., M.Sc. (Waterloo), M.A., Ph.D. (chimie) (Princeton) SPINO, Claude, B.Sc. (Montréal), M.Sc., Ph.D. (chimie organique)

SPINO, Claude, B.Sc. (Montréal), M.Sc., Ph.D. (chimie organique) (British Columbia)

ZHAO, Yue, B. chimie (Chengdu), D.E.A. (chimie), D. d'U. (chimie) (Paris VI)

Chargée et chargé de cours

CHAPUZET, Jean-Marc TRUONG, Kim Doan

Personnel professionnel

BOULAY, Gaston BRETON, Michel DROUIN, Marc MONGRAIN, Marcel POTHIER, Normand SOUCY, Pierre ZAMOJSKA, Régina

Personnel de soutien

ARCHAMBAULT, Michel DESPONTS, Alain DUBUC, Réal LABBÉ, Benoit LEMIEUX, Anita LESSARD, Gisèle PLOURDE, Guy THÉRIAULT, Solange

DÉPARTEMENT DE MATHÉMATIQUES ET D'INFORMATIQUE

ASSEM, Ibrahim, B.Sc., M.Sc. (Alexandrie), Ph.D. (Carleton)

Professeure et professeurs titulaires

BELLEY, Jean-Marc, B.Sc., M.Sc., Ph.D. (McGill)
BENCHAKROUN, Abdelhamid, M.Sc. (Paris), D.E.A. (Rabat), Ph.D. (Montréal)
COLIN, Bernard, D.E.A., D. 3° cycle (Paris)
COURTEAU, Bernard, B. Sc., M.Sc., (Montréal)
CUSTEAU, Guy, B.Sc.A. (Sherbrooke), M.Sc., Ph.D. (Waterloo)
DUBEAU, François, B.Sc.A. (génie physique), M.Sc.A. (génie industriel) (Pohytechnique), B.Sc., Ph.D. (mathématiques) (Montréal)
DUBOIS, Jacques, B.Sc., M.Sc., Ph.D. (Montréal)
GAGNON, Reine, M.Sc., Ph.D. (Montréal)
GAGNON, Reine, M.Sc., Ph.D. (Montréal)
GIROUX, Gaston, B.Sc., M.Sc., Ph.D. (Montréal)
HAGUEL, Jacques, L.Sc., D.E.A., D. 3° cycle (Paris)
KACZYNSKI, Tomasz, M.Sc., (Varsovie), Ph.D. (McGill)
KRELL, Max, Ph.D. (Francfort)
LEDUC, Pierre Yves, B.Sc., M.Sc., Ph.D. (Montréal)
MORALES, Pedro, B.Sc. (Chili), M.Sc., Ph.D. (Montréal)
ST-DENIS, Richard, B.Sc., M.Sc., Ph.D. (Montréal)
VAILLANCOURT, Jean, B.Sc. (LAval), M.Sc., Ph.D. (Carleton)
WANG, Shengrui, B.Sc. (Hebei, Chine), D.E.A. (Grenoble), Doct.
(I.N. Poly., Grenoble)
ZÉROUAL, Kacem, L.Droit (Maroc), M.Info. (Laval), Ph.D. (Montréal)

Professeurs agrégés

AYEB, Béchir, Lic.Inf., M.Inf. (Namur), D.E.A. (informatique, D.d'U. (informatique) (Nancy I)

BARBEAU, Michel, B.Sc. (Sherbrooke), M.Sc., Ph.D. (informatique) (Montréal)

BEAUDRY, Martin, B.Sc. (Montréal), M.Sc. (U.B.C.), Ph.D. (McGill) BOULANGER, Alain, B.Sc., M.Sc. (Sherbrooke), Ph.D. (Montréal), B.A.A. (Sherbrooke), C.G.A.

DION, Jean-Guy, B.Sc., M.Sc. (Sherbrooke), D. 3° cycle (Grenoble) FRAPPIER, Marc, B.Sc., M.Sc. (Sherbrooke), Ph.D. (informatique) (Ottawa)

GIRARD, Gabriel, B.Sc., M.Sc. (Sherbrooke)
GOULET, Jean. B.Sc. (Sherbrooke), M.Sc. (McGill)
HOUDEVILLE, Gérard, B.Sc., Lic.Inf., M.Sc., D.E.A. (Grenoble)
KABANZA, Froduald, Lic. Inf., Doct. (informatique) (Liège)
LIU, Shiping, B.Sc. (Hunan), M.Sc. (Beijing), Ph.D. (mathématiques)
(Liverpool)

MONGA, Ernest, D.I.A.S. (ISPEA, Yaoundé), M.Sc., Ph.D. (mathématiques) (Montréal)

ZIOU, Djemel, B.Sc.A. (Annaba), D.E.A., Doct. (informatique) (I.N. Poly., Lorraine)

Chargées et chargés de cours

ABBADENI, Noureddine ABDESSELAM, Aziz AITNOURI, Elmehdi ALLILI, Madjid AUBÉ, Alain BERNIER, Steve BLAIS, Michel BOISLARD, Jean-Yves BOISVERT, Alex BOUCHER, Claude **BOURBONNAIS**, Pierre BRAULT, Guy CARRIÈRE, Francine CHAN MAN FONG, Chan Feng CHERIEF, Ferroudia CHTOUROU, Zied DESJARDINS, Claude EGLI, Richard EL AFIA, Abdellatif EL YASSINI, Khalid EL YASSINI, Mohammed FINES, Philippe HAMDACHE, Abdelilah HAMEL, Serge LABYAD, Said LAMONTAGNE, Yvon LAWRENCE, Scott LÉVESQUE, François MBI, Magunku MELLAL, Nacéra PELLEU, Joséphine PROBST, Christopher RACINE, Michel REZGUI, Mourad ROBERGE, Jean-Claude SAVAGE, Sylvie WATIER, François

Personnel professionnel

BUSSIÈRES, Luc MAZUHELLI, Marc

Personnel de soutien

BENOIT, Michel **BOUTIN, Ginette** CHABOT, Michèle GAUCHER, Stéphane GLADU, Sylvia LACASSE. Anne

DÉPARTEMENT DE PHYSIQUE

Professeurs titulaires

AUBIN, Marcel, B.Sc., Ph.D. (physique) (Ottawa) BEERENS, Jean, B.Ing. (physique) (Montréal), M.Sc., Ph.D. (physique) (Sherbrooke)

BOURBONNAIS, Claude, B.Sc. (physique) (Montréal), M.Sc., Ph.D. (physique) (Sherbrooke)

CAILLÉ, Alain, B.Sc. (Montréal), M.Sc., Ph.D. (McGill) CARLONE, Cosmo, B.Sc. (physique) (Windsor), M.Sc., Ph.D. (Co-Iombie Britannique)

JANDL, Serge, M.Sc. (Grenoble), M.Sc., Ph.D. (physique) (Mont-réal), D.Sc. (physique) (Grenoble) LEMIEUX, André, B.Sc., M.Sc. (physique) (Montréal) POIRIER, Mario, B.Sc., M.Sc., Ph.D. (physique) (Montréal) TREMBLAY, André-Marie, B.Sc. (Montréal), Ph.D. (M.I.T.)

Professeurs agrégés

MORRIS, Denis, B.Sc.A., M.Sc.A. (génie physique) (Poly.), Ph.D. (physique) (Montréal) SÉNÉCHAL, David, B.Sc. (McGill), M.Sc., Ph.D. (Cornell)

Professeur adjoint

CÔTÉ, René, B.Sc., M.Sc. (Sherbrooke), Ph.D. (physique) (Toronto)

Chargée et chargés de cours

GROLEAU, Daniel LOPEZ, José-Maria MOUKOURI, Samuel MURPHY, Douglas TALON, Suzanne

Personnel professionnel

BERNIER, Guy VACHON, Gilbert

Personnel de soutien

BLANCHARD, Hélène CASTONGUAY, Mario PELLETIER, Stéphane ZAKORZERMY, Marcel

> Le règlement facultaire d'évaluation des apprentissages est publié sur l'Internet à l'adresse : http://www.usherb.ca sous la rubrique Information générale

Baccalauréat en biochimie

(819) 821-7071 (téléphone) (819) 821-8049 (télécopieur) biologie@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Faculté des sciences, Faculté de médecine

GRADE : Bachelière ou bachelier ès sciences B.Sc.

OR IECTIES

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir une formation scientifique générale axée sur le développement de sa curiosité intellectuelle, de son esprit critique et de sa capacité d'analyse et de synthèse;
 - d'acquérir une formation scientifique spécialisée en biochimie et en biologie moléculaire, préparant au marché du travail ou à la poursuite d'études supérieures;
- d'acquérir des connaissances approfondies en chimie, c'est-àdire en chimie organique, inorganique, physique et analytique,
- en relation avec la biochimie;
- d'acquérir des connaissances en biologie, particulièrement en physiologie, biologie cellulaire, génétique, biotechnologie et immunologie, en microbiologie, virologie et en biochimie structurale:
- d'acquérir des connaissances en méthodes statistiques et en biométrie:
- d'acquérir des habitetés de travail en équipe, de communication scientifique et d'utilisation de l'outil informatique;
- d'acquérir une connaissance des aspects éthiques de la biochi-
- d'acquérir des concepts et démarches propres à la biochimie et des savoirfaire de type professionnel, entre autres par des stages en milieu de travail:
- d'intégrer, notamment par des stages coopératifs, les connaissances acquises afin d'agir d'une manière créative sur des problèmes biochimiques concrets et de porter un jugement scientifique permettant d'évaluer la portée de son intervention.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1° cycle de l'Université (cf. Règlement des études)

Conditions particulières

Bloc d'exigences 10.9 soit : Mathématiques 103, 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

۸u

Bloc d'exigences 12.64 soit :

Détenir un diplôme d'études collégiales (DEC) en techniques biologiques ou en techniques physiques ou l'équivalent et avoir complété les cours de niveau collégial suivants ou leur équivalent :

Mathématiques 103 et 203 Chimie 101 et 201 Biologie 301 ou 921 Un cours de physique

RÉGIME DES ÉTUDES

Régime régulier à temps complet ou à temps partiel et régime coopératif à temps complet

MODALITÉS DU RÉGIME COOPÉRATIE

Normalement, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

	1r	1re année			Ze année			3e année		
	AUT	HIV	ĖΤĖ	AUT	HIV	ÉΤÉ	AUT	ΗīV	ÉTÉ	
Régulier	S-1	S-2	-	S-3	S-4	-	S-5	S-6	-	
Coopératif	S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	S-6	

CONDITIONS D'ACCÈS AU RÉGIME COOPÉRATIF

Pour avoir accès au régime coopératif et sous réserve de la disponibilité de stages, l'étudiante ou l'étudiant doit avoir une moyenne cumulative égale ou supérieure à 2.5 sur 4.3 après la première session et être inscrite ou inscrit à la deuxième session. Cette disposition doit être révisée annuellement par le Conseil de la Faculté des sciences.

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (83 crédits)

		CR
BCL 102	Biologie cellulaire I	3
BCL 504	Différenciation cellulaire I *	2
BCM 111	Biochimie générale I - Travaux pratiques	2
BCM 112	Biochimie générale I	2
BCM 311	Biochimie générale II - Travaux pratiques	3
BCM 316	Cinétique enzymatique *	3
BCM 318	Biochimie générale II	4
BCM 404	Métabolisme avancé *	3 3
BCM 500	Biochimie physique *	3
BCM 501	Techniques biochimiques *	3
BCM 503	Laboratoire de biochimie avancée *	3
BCM 507	Sujets choisis en génétique moléculaire *	2
BCM 508	Biotechnologie *	3
BCM 600	Biochimie appliquée *	3
BCM 608	Séminaire de biochimie *	1
BIM 500	Biologie moléculaire	3
BIO 101	Biométrie	3
CAN 300	Chimie analytique	. 3
CAN 305	Méthodes quantitatives de la chimie	
	- Travaux pratiques	2

CHM 302	Techniques de chimie organique et	
	inorganique - Travaux pratiques	3
COR 300	Chimie organique I	3
COR 301	Chimie organique II	3
COR 400	Chimie organique III	3
CPH 305	Méthodes de la chimie physique	2
CPH 311	Chimie physique	4
CPH 405	Chimie physique - Travaux pratiques	2
GNT 301	Génétique - Travaux pratiques *	1
GNT 304	Génétique	2
IML 300	Immunologie	2
MCB 100	Microbiologie	3
MCB 101	Microbiologie - Travaux pratiques	ī
PSL 104	Physiologie animale	3

Activités pédagogiques à option (7 crédits)

Choisies parmi les activités suivantes :

		CH
BCL 600	Introduction à l'immunologie *	2
BCM 602	Biochimie clinique *	2
BCM 603	Analyse structurale informatisée *	1
BCM 606	Endocrinologie moléculaire *	2
BCM 621	Initiation à la recherche en biochimie *	2
CAN 502	Analyse organique	2
CHM 402	Chimie de l'environnement	3
CHM 504	Chimie des polymères	3
CIQ 300	Chimie inorganique I	3
COR 501	Synthèse organique	3
EMB 106	Biologie du développement	3
END 502	Endocrinologie	3
IFT 159	Analyse et programmation	3
PSV 100	Physiologie végétale	2
RBL 600	Les radiations en biochimie *	1
VIR 500	Virologie	2
VIR 523	Virologie - Travaux pratiques	2

^{*} Activités offertes à la Faculté de médecine

Baccalauréat en biologie

(819) 821-7071 (téléphone)

(819) 821-8049 (télécopieur)

biologie@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de biologie, Faculté des sciences

GRADE : Bachelière ou bachelier ès sciences, B.Sc.

Le baccalauréat en biologie permet un cheminement sans concentration et un cheminement incluant l'une des trois concentrations suivantes : biotechnologie, écologie et microbiologie.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir une formation scientifique fondamentale théorique et pratique en biologie;
- d'acquérir des savoirs en statistiques et en chimie considérés comme essentiels à l'acquisition d'autres savoirs en biologie;
- d'acquérir des savoir-faire de type professionnel, respectant l'éthique en sciences biologiques, grâce à des stages en milieu de travail;
- d'intégrer, notamment par les stages coopératifs, les connaissances acquises en science afin d'agir d'une manière créative sur des problèmes biologiques concrets et de porter un jugement scientifique permettant d'évaluer la portée de son intervention:
- d'observer les phénomènes de la vie végétale, animale et microbienne dans un but de compréhension et d'analyse;
- de prendre en main, entre autres par l'intermédiaire de stages en milieu de travail, sa propre formation et son insertion dans un processus d'éducation continue;
- de développer sa curiosité intellectuelle et son esprit critique;

CB

CR

- d'apprendre à interegir efficacement avec les membres de la communauté scientifique par le travail en équipe, la participation productive en milieu de travail et l'échange d'information;
- d'acquérir une formation scientifique spécialisée en biologie, et, le cas échéant, en biotechnologie, en écologie ou en microbiologie le préparant au marché du travail ou à la poursuite d'études supérieures;
- d'acquérir les concepts et démarches propres à ces domaines et notamment une connaissance étendue de la diversité des structures, des fonctions, des réactions et des comportements du monde des vivants;
- de développer ses capacités de jugement, de créativité, d'organisation et d'expression afin d'être apte à poursuivre de façon continue sa formation professionnelle et à répondre par son autonomie aux besoins de l'évolution de sa discipline.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1° cycle de l'Université (cf. Règlement des études)

Conditions particulières

Bloc d'exigences 10.9 soit : Mathématiques 103, 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

Bloc d'exigences 12.19 soit :

Détenir un diplôme d'études collégiales (DEC) en techniques biologiques ou l'équivalent et avoir complété les cours de niveau collégial :

Mathématiques 103 et 203 ou leur équivalent et Chimie 101 et 201 ou leur équivalent.

RÉGIMES DES ÉTUDES

Régime régulier à temps complet ou à temps partiel et régime coopératif à temps complet

MODALITÉS DU RÉGIME COOPÉRATIF

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

	111	e ann	ée	2e année			3e ennée			4e année			
	AUT	нv	ÉTÉ	AUT	нг	ÉTÉ	AUT	ніV	ÉTÉ	AUT	нг	ÉTÉ	AUT
Régulier	S-1	S-2	·	5-3	S-4		S-5	5-8	ŀ			-	
Coopératif écologie	S-1	\$-2	T-1	S-3	T-2	S-4	T-3	S-5		5-8		-	
Coopératif biotechnologie microbiologie	S-1	5-2	ŀ	S-3	T-1	S-4	T-2	\$-6	1-3	5-8		-	
Régulier	-	S-1°		S-2	5-3	-	54	S-6		5-8	S-7	-	
Coopératif écologie	Ŀ	5-1*	·	5-2	5-3	T-1	S-4	T-2	S-6	T-3	S-6	Ŀ	S-7
Coopératif biotechnologie microbiologie		S-1*	-	S-2	S-3		54	T-1	\$-5	T-2	5-6	T-3	5-7

L'inscription au trimestre d'hiver implique que l'étudiante ou l'étudiant devra faire sept sessions d'études plutôt que six. Le nombre d'inscriptions en 1º session au trimestre d'hiver dépendra du nombre de places disponibles en fonction de la capacité d'accueil.

CONDITIONS D'ACCÈS AU RÉGIME COOPÉRATIF

Pour avoir accès au régime coopératif et sous réserve de la disponibilité de stages, l'étudiante ou l'étudiant au cheminement avec concentration en écologie doit avoir une moyenne cumulative égale ou supérieure à 2,5 sur 4,3 après la première session et être inscrite ou inscrit à la deuxième session. Aux cheminements avec

concentration en biotechnologie et microbiologie, l'étudiante ou l'étudiant doit avoir une moyenne égale ou supérieure à 2,5 sur 4,3 après la deuxième session et être inscrite ou inscrit à la troisième session. Cette disposition doit être révisée annuellement par le Conseil de la Faculté des sciences.

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

TRONG COMMUN

		Un
BCL 102	Biologie cellulaire I	3
BCM 111	Biochimie générale I - Travaux pratiques	2
BCM 112	Biochimie générale I	2
BIO 101	Biométrie	3
BIO 600	Projets d'intégration en biologie	2 3 3 2 3 2 3
COR 200		2
ECL 110		3
GBI 102		2
GNT 302	Génétique	3
MCB 100		3
MCB 101	Microbiologie - Travaux pratiques	1
PSL 104		3
PSV 100		3
PSV 103		1
TSB 303		2

CHEMINEMENT SANS CONCENTRATION

- 35 crédits d'activités pédagogiques obligatoires du tronc commun
- 55 crédits d'activités pédagogiques à option et au choix sui-

Activités pédagogiques à option (49 à 55 crédits)

choisies parmi les activités suivantes :

ALM 300 Nutrition

ENT: 102

Entomologie

ALM 300	Nutrition	2
BCL 506	Biologie cellulaire II	2 3 1
BCM 104	Biochimie métabolique	1
BCM 313	Biochimie générale II - Travaux pretiques	5
BCM 318	Biochimie générale II	4
BCM 514	Biochimie des protéines	3
BIO 103	Utilisation d'un chiffrier électronique	1
BIO 105	Utilisation d'une base de données	1
BIO 169	Traitement de données biologiques	1 2 3
BOT 102	Formes et fonctions végétales	3
BOT 103	Formes et fonctions végétales	
	- Travaux pretiques	1
BOT 506	Systématique végétale	2 2
BOT 507	Systématique végétale - Travaux pratiques	2
CHM 307	Travaux pratiques de chimie organique et	_
	inorganique	2
CHM 319	Sécurité	1
CHM 402	Chimie de l'environnement	3
COR 306	Chimie organique	2
ECL 308	Ļes sols vivants	3
ECL 402	Ęcologie aquatique	2
ECL 403	Écologie aquatique - Travaux pratiques	1
ECL 510	Écologie végétale	3
ECL 513	Travaux pratiques d'ornithologie	1
ECL 516	Écologie animale	3
ECL 519	Travaux pratiques d'écologie	3
ECL 521	Initiation à la recherche écologique I	2
ECL 523	Initiation à la recherche écologique II	2
ECL 524	Éléments d'éthologie	2
ECL 525	Ţravaux pratiques d'éthologie	1
ECL 530	Ecophysiologie animale	2
ECL 600	Écologie des paysages	2
ECL 604	Évolution et génétique des populations	2
ECL 606	Çonservation et gestion des ressources	3
ECL 608	Ecologie internationale	2 1 3 2 2 2 1 3 3 3 2 2 2 2 2 3 3 3 3 3
EMB 106	Biologie du développement	3
END 502	Endocrinologie	3
ENT 101	Entomologie - Travaux pratiques	1

2

ENV 709	Télédétection appliquée à l'environnement	3	ECL 608	Écologie internationale (2)	3
ENV 762	Droit de l'environnement	3	EMB 106	Biologie du développement (1) (2) (3)	3
ENV 764	Écotoxicologie	3	END 502	Endocrinologie (1) (2) (3)	3
GBI 104	Éthique et biologie	1	ENT 101	Entomologie - Travaux pratiques (2)	1
GEO 101	Éléments de climatologie	3	ENT 102	Entomologie (2)	2
GEO 102	Principes de cartographie	3	ENV 705	Études d'impact et prospectives a	3
GEO 113	Milieux naturels	3	ENV 709	Télédétection appliquée à l'environnement (2)	3
GEO 115	Milieux physiques	3	ENV 762	Droit de l'environnement (1) (2) (3)	3 3 3
GEO 400	Écologie physique des bassins-versants	3	ENV 764	Écotoxicologie (1) (2) (3)	3
GEO 415	Climatologie spécialisée et hydrométéorologie	3	GBI 104	Éthique et biologie (1) (2) (3)	1
GNT 404	Génie génétique I	1	GEO 101	Éléments de climatologie ^{co}	3
GNT 504	Génie biomoléculaire	2	GEO 102	Principes de cartographie (2)	3 3 3
GNT 506	Génie génétique II	2 2	GEO 113	Milieux naturels	3
GNT 608	Génétique et biologie moléculaire des levures	2	GEO 115	Milieux physiques	3
MCB 504	Physiologie et génétique microbienne	3	GEO 400	Écologie physique des bassins-versants a	3
MCB 505	Physiologie et génétique microbienne		GEO 415	Climatologie spécialisée et hydrométéorologie 22	3
	- Travaux pratiques	1	GNT 404	Génie génétique i a	1
MCB 508	Microbiologie clinique	3	GNT 504	Génie biomoléculaire ^{to}	2
MCB 509	Microbiologie clinique - Travaux pratiques	1	GNT 506	Génie génétique II di	2
MCB 510	Microbiologie industrielle	3	GNT 608	Génétique et biologie moléculaire des levures (1) an	2
MCB 512	Adaptations microbiennes	3 2 2 3 2 2	GNT 625	Initiation à la recherche en génie génétique (1)	4
MCB 514	Écologie microbienne	2	MCB 510	Microbiologie industrielle m	3
PHI 333	Philosophie de la biologie	3	MCB 512	Adaptations microbiennes m	2
PSL 600	Biologie de la lactation	2	MCB 514	Écologie microbienne (1) (2) (3)	2
PSV 500	Écophysiologie végétale	2	MCB 625	Initiation à la recherche en microbiologie ^{ca}	4
PSV 502	Physiologie des hormones végétales	2	PHI 333	Philosophie de la biologie (1) (2) (3)	3
PSV 504	Physiologie végétale avancée	2	PSL 600	Biologie de la lactation (1) (2) (5)	2
PTL 304	Infection et immunité	2	PSV 500	Écophysiologie végétale ^{(2) (3)}	2
PTL 306	Phytopathologie	2	PSV 502	Physiologie des hormones végétales (1) (2)	2
VIR 500	Virologie	2	PSV 504	Physiologie végétale avancée (1) (2) (3)	2
VIR 523	Virologie - Travaux pratiques	2	ZOO 104	Formes et fonctions animales a	4
ZOO 104	Formes et fonctions animales	4	ZOO 105	Formes et fonctions animales	
ZOO 105	Formes et fonctions animales			-Travaux pratiques ^{a)}	1
	- Travaux pratiques	1	ZOO 302		2
ZOO 302	Ichtyologie	2	ZOO 303	Ichtyologie - Travaux pratiques (2)	1
ZOO 303	Ichtyologie - Travaux pratiques	1			
ZOO 500	Taxonomie animale	2	Activités p	pédagogiques au choix (0 à 6 crédits)	

Une activité pédagogique parmi les suivantes :

			C n
IML	300	Immunologie	2
	302	Immunologia	3

Activités pédagogiques au choix (0 à 6 crédits)

CHEMINEMENTS INCLUANT UNE CONCENTRATION

- 35 crédits d'activités pédagogiques du tronc commun
 de 5 à 16 crédits d'activités pédagogiques communes à tous les cheminements incluant une concentration, selon la concentration choisie
- de 39 à 44 crédits d'activités pédagogiques spécifiques à une concentration, selon la concentration choisie

ACTIVITÉS PÉDAGOGIQUES COMMUNES ÀTOUS LES CHEMINEMENTS INCLUANT UNE CONCENTRATION (11 à 16 crédits)

Le nombre de crédits des activités pédagogiques communes à tous les cheminements incluent une concentration varie selon la concentration choisie, soit :

- 11 crédits pour la concentration en biotechnologie
- 16 crédits pour la concentration en écologie
- 15 crédits pour la concentration en microbiologie

Activités pédagogiques à option (5 à 16 crédits)

Choisies parmi les activités suivantes :

		CR
ALM 300	Nutrition (2) (1)	2
BCL 506	Biologie cellulaire II a	. 3
BIO 103	Utilisation d'un chiffrier électronique mana	1
BIO 105	Utilisation d'une base de données (1) (2) (3)	1
BOT 102	Formes et fonctions végétales a	3
BOT 103	Formes et fonctions végétales	
	- Travaux pratiques ^{co}	1
CHM 319	Sécurité in ta ta	1
CHM 402	Chimie de l'environnement (1) (3)	3
ECL 308	Les sols vivants (2)(0)	3
ECL 521	Initiation à la recherche écologique I (2)	2

Initiation à la recherche écologique II a

Éléments d'éthologie ²³ Travaux pratiques d'éthologie ²³ Écophysiologie animale ^{20 (1)}

.....

ACTIVITÉS PÉDAGOGIQUES SPÉCIFIQUES À UNE CONCENTRA-TION

BIOTECHNOLOGIE

Activités pédagogiques obligatoires (44 crédits)

_		CR
BCL 506	Biologie cellulaire II	3
BCM 313	Biochimie générale II - Travaux pretiques	5
BCM 318	Biochimie générale II	4
BCM 514	Biochimie des protéines	3
CHM 307	Travaux pratiques de chimie organique et	
C	inorganique	2
COR 306	Chimie organique	2 2 1 2 2 2 3 3
GNT 404	Génie génétique I	- 1
GNT 504	Génie biomoléculaire	,
		2
GNT 506	Génie génétique II	2
GNT 523	Génie génétique - Travaux pratiques	2
HTL 302	Histocytologie	3
IML 302	Immunologie	
MCB 504	Physiologie et génétique microbienne	3
MCB 505	Physiologie et génétique microbienne	
	- Travaux pratiques	1
PBI 504	Séminaire de biotechnologie	2
TSB 603	Culture de cellules et tissus	
	- Travaux pratiques	2
VIR 500	Virologie	2 2 2
VIR 523	Virologie - Travaux pratiques	2
-	, ,	

ÉCOLOGIE

Activités pédagogiques obligatoires (39 crédits)					
•	• • •	CR			
BCM 104	Biochimie métabolique	1			
BIO 169	Traitement de données biologiques	2			
BOT 102	Formes et fonctions végétales	3			
BOT 103	Formes et fonctions végétales				
	- Travaux pratiques	1			
BOT 506	Systématique végétale	2			
BOT 507	Systématique végétale - Travaux pratiques	2			
ECL 402	Écologie aquatique	2			
FCI 403	Écologie equatique - Travaux pratiques	1			

ECL 523 ECL 524

CR

ECL 510 ECL 513 ECL 516	Écologie végétale Travaux pratiques d'ornithologie Écologie animale
ECL 519	Travaux pratiques d'écologie
ECL 600	Écologie des paysages
ECL 603	Conservation et gestion des ressources - Travaux pratiques
ECL 604	Évolution et génétique des populations
ECL 606	Conservation et gestion des ressources
ZOO 104	Formes et fonctions animales
ZOO 105	Formes et fonctions animales - Travaux pratiques
ZOO 500	Taxonomie animale

MICROBIOLOGIE

Activités pédagogiques obligatoires (40 crédits)

BCM 313	Biochimie générale II - Travaux pratiques	5
BCM 318	Biochimie générale II	4
CHM 307	Travaux pratiques de chimie organique et	
	inorganique	2
COR 306	Chimie organique	2
IML 302	Immunologie	3
MCB 500	Séminaire de microbiologie	1
MCB 504	Physiologie et génétique microbienne	3
MCB 505	Physiologie et génétique microbienne	
	- Travaux pratiques	1
MCB 508	Microbiologie clinique	3
MCB 509	Microbiologie clinique - Travaux pratiques	1
MCB 510	Microbiologie industrielle	3
MCB 512	Adaptations microbiennes	2
MCB 523	Systématique microbienne	2
PTL 304	Infection et immunité	2
PTL 306	Phytopathologie	2
VIR 500	Virologie	2
VIR 523	Virologie - Travaux pratiques	2

- (1) Activités pédagogiques conseillées à l'étudiante ou à l'étudiant qui choisit le cheminement incluant la concentration en biotechnologie.
- (2) Activités pédagogiques conseillées à l'étudiante ou à l'étudiant qui choisit le cheminement incluant la concentration en écologie.
- (3) Activités pédagogiques conseillées à l'étudiante ou à l'étudiant qui choisit le cheminement incluant la concentration en microbiologie.

Mineure en biologie

(819) 821-7071 (téléphone) (819) 821-8049 (télécopieur) blologie@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ: Département de biologie, Faculté des sciences

ADMISSION

Conditions particulières

Bloc d'exigences 10.9 soit : Mathématiques 103, 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

CRÉDITS EXIGES: 30

PROFIL DES ÉTUDES

3

3

3

3

4

2

CR

Pour les étudiantes ou les étudiants inscrits au programme de baccalauréat en philosophie ou au programme de baccalauréat multidisciplinaire

Activités pédagogiques à option (30 crédits)

Choisies parmi les activités suivantes :

BCL 102	Biologie cellulaire I	3
BCM 104	Biochimie métabolique	1
BCM 111	Biochimie générale I - Travaux pratiques	ż
BCM 112	Biochimie générale t	2
BIO 101	Biométrie	3
BOT 102	Formes et fonctions végétales	3
BOT 103	Formes et fonctions végétales	
	- Travaux pratiques	1
COR 200	Introduction à la chimie organique	2
ECL 110	Écologie générale	3
EMB 106	Biologie du développement	3 3
GBI 102	Biologie fondamentale	2
GNT 302	Génétique	3
		્ર
MCB 100	Microbiologie	3
MCB 101	Microbiologie - Travaux pratiques	1
PSL 104	Physiologie animale	3
PSV 100	Physiologie végétale	2
PSV 103	Physiologie végétale - Travaux pratiques	1
TSB 303	Méthodes analytiques en biologie	ż
ZOO 104	Formes et fonctions animales	4
ZOO 105	Formes et fonctions animales	
	- Travaux pratiques	1

Baccalauréat en chimie

(819) 821-7088 (téléphone) (819) 821-8017 (télécopieur) zamoiska@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ: Département de chimie, Faculté des sciences

GRADE: Bachelière ou bachelier ès sciences, B.Sc.

Le baccalauréat en chimie permet un cheminement sans concentration et un cheminement incluant l'une des deux concentrations. suivantes : chimie pharmaceutique ou chimie des matériaux industriels

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- de devenir membre de l'ordre des chimistes:
- d'acquérir la formation scientifique nécessaire :
- à la maîtrise des concepts, des principes et des méthodes de la chimie:
- à l'explication de la structure atomique et moléculaire;
- · à la prédiction et à l'interprétation des propriétés et des transformations de la matière ainsi que des variations d'énergie qui accompagnent ces transformations;
- · à la participation, à la conception et à la modification des aspects cinétiques et réactionnels des procédés industriels;
- à la préparation de nouveaux produits;
- · au contrôle de la qualité des produits;
- d'acquérir de bonnes méthodes de travail pour poursuivre de façon continue sa formation professionnelle;
- d'utiliser la littérature scientifique;
- d'acquérir des capacités de jugement critique, de curiosité intellectuelle, d'analyse et de synthèse;
- de répondre par son autonomie aux besoins de l'évolution technologique de notre société;
- d'acquérir, le cas échéant, par le choix de la concentration en chimie pharmaceutique, la formation scientifique pour le rendre capable :
- · d'isoler des substances biologiquement actives et naturelles;

CR

CR

- d'identifier par des techniques analytiques la structure spatiale de ces molécules et de leurs principes actifs;
- d'effectuer la synthèse en laboratoire de ces mêmes molécules (en plusieurs étapes) en partant de molécules beaucoup plus simples et de façon à remplacer, si nécessaire, un produit naturel onéreux par un substitut synthétique;
- d'examiner d'autres produits modèles susceptibles d'avoir une activité pharmacologique similaire aux substances naturelles;
- d'établir des stratégies de rétrosynthèse afin de préparer des molécules synthétiques;
- d'acquérir, le cas échéant, par le choix de la concentration en chimie des matériaux industriels, la formation scientifique pour le rendre canable.
- de déterminer la composition, la structure et de mesurer les énergies associées aux matériaux;
- de synthétiser de nouveaux matériaux ayant des propriétés physiques ou chimiques en fonction d'une utilisation spécifique;
- de modifier les matériaux existants afin de leur conférer des propriétés souhaitées;
- d'utiliser les techniques d'analyse de surface des matériaux afin de faire des corrélations entre les propriétés physiques et chimiques et la composition atomique ou moléculaire;
- d'établir les diverses étapes et conditions de production de matériaux conduisant à leur application dans l'industrie.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1° cycle de l'Université (cf. Règlement des études)

Conditions particulières

Bloc d'exigences 10.9 soit : Mathématiques 103, 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

οu

Bloc d'exigences 12.09 soit :

détenir un diplôme d'études collégiales (DEC) en formation professionnelle dans l'un des programmes suivants ou leur équivalent :

210.01 techniques de chimie analytique

210.02 techniques de génie chimique

210.03 techniques de chimie-biologie

et avoir complété les cours de niveau collégial suivants ou leur équivalent :

Mathématiques 203 Physique 101 ou 102

ou

Bloc d'exigences 12.69 soit :

détenir un diplôme d'études collégiales (DEC) en formation professionnelle ou l'équivalent et avoir complété les cours de niveau collégial suivants ou leur équivalent :

Mathématiques 103 et 203 Chimie 101 et 201 Deux cours de physique

RÉGIMES DES ÉTUDES

Régime régulier à temps complet ou à temps partiel et régime coopératif à temps complet

MODALITÉS DU RÉGIME COOPÉRATIF

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

1re année			Ire année 2e année			3e année			4e année			
AUT	ніх	ÉTÉ	AUT	ні	ÉTÉ	AUT	HIV	ÉTÉ	AUT	ΗIV	ÉTÉ	AUT
S-1	S-2	-	S-3	T-1	S-4	T-2	S-5	T-3	S-6	-	•	•
	S-1*	-	S-2	S-3	-	S-4	T-1	S-5	T-2	S-6	T-3	S-7

L'inscription en 1^{re} session au trimestre d'hiver implique que l'étudiante ou l'étudiant devra faire sept sessions d'études plutôt que six.

CONDITIONS D'ACCÈS AU RÉGIME COOPÉRATIF

Pour avoir accès au régime coopératif et sous réserve de la disponibilité de stages, l'étudiante ou l'étudiant à temps complet admis en session 1 au trimestre d'automne, doit avoir une moyenne cumulative égale ou supérieure à 2 sur 4,3 après la deuxième session et être inscrit à la troisième session.

L'étudiante ou l'étudiant à temps complet admis en session 1 au trimestre d'hiver, doit avoir une moyenne cumulative égale ou supérieure à 2 sur 4,3 après la troisième session et être inscrit à la quatrième session.

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

TRONC COMMUN (38 crédits)

Activités pédagogiques obligatoires (38 crédits)

CAN 300	Chimie analytique	3
CAN 305	Méthodes quantitatives de la chimie	
	- Travaux pratiques	2
CAN 400	Analyse instrumentale	3
CAN 502	Analyse organique	2
CHM 302	Techniques de chimie organique et	_
	inorganique - Travaux pratiques	3
CHM 318	Chimie minérale	2
CHM 319	Sécurité	ī
CIQ 300	Chimie inorganique I	3
COR 300	Chimie organique I	3
COR 301	Chimie organique II	3
CPH 305	Méthodes de la chimie physique	2
CPH 307	Chimie physique	3
CPH 405	Chimie physique - Travaux pratiques	2
CPH 407	Équilibre et solutions	3
MAT 195	Calcul différentiel et intégral	ž
		_

ACTIVITÉS PÉDAGOGIQUES COMMUNES AUX CHEMINE-MENTS SPÉCIALISÉS (22 crédits)

Activités pédagogiques obligatoires (22 crédits)

BCM 300	Biochimie	3
CAN 405	Analyse instrumentale - Travaux pratiques	2
CHM 400	Biochimie et chimie organique	
	- Travaux pratiques	2
CHM 408	Introduction à la chimie des matériaux	2
CIQ 400	Chimie inorganique II	3
COR 402	Chimie organique - Travaux pratiques	2
CPH 308	Chimie quantique	2
CPH 408	Spectroscopie	3
MAT 292	Algèbre linéaire	3

PROGRAMME SPÉCIALISÉ AVEC CHEMINEMENT SANS CON-CENTRATION

- · 38 crédits d'activités pédagogiques du tronc commun
- 22 crédits d'activités pédagogiques communes aux cheminements spécialisés
- 30 crédits d'activités pédagogiques à option et au choix suivantes :

Activités pédagogiques à option (24 à 30 crédits)

Six crédits parmi les activités suivantes :

on create parmi too betivites currentes .		CR
CHM 510	Projet de trimestre	6
CHM 520	Automatisation et interface	3
CIQ 401	Chimie inorganique - Travaux pratiques	3

De 18 à 24 crédits parmi les activités pédagogiques offertes dans les autres cheminements du programme ou parmi les activités suivantes :

		CR
CHM 402	Chimie de l'environnement	3
CHM 503	Électrochimie	3
IFT 159	Analyse et programmation	3

Activités pédagogiques au choix (0 à 6 crédits)

PROGRAMME SPÉCIALISÉ AVEC CHEMINEMENT INCLUANT LINE CONCENTRATION

- 38 crédits d'activités pédagogiques du tronc commun 22 crédits d'activités pédagogiques communes aux chemine-
- ments spécialisés
- 30 crédits d'activités pédagogiques obligatoires et à option suivantes :

CHIMIE DES MATÉRIAUX INDUSTRIELS

Activités pédagogiques obligatoires (24 crédits)

•	• • • •	CR
CAN 508	Techniques de séparation	3
CHM 504	Chimie des polymères	. 3
CHM 512	Projet de trimestre	6
CIQ 401	Chimie inorganique - Travaux pratiques	3
CPH 507	Thermodynamique statistique et cinétique	3
CPH 508	Chimie des surfaces	3
CPH 509	Chimie des solutions et colloïdes	3

Activités pédagogiques à option (6 crédits)

Choisies parmi les activités du programme non déjà choisies

CHIMIE PHARMACEUTIQUE

Activités pédagogiques obligatoires (24 crédits)

•		CR
BCM 400	Chimie pharmaceutique	3
CHM 508	Transformations chimiques des substances	
	naturelles	3
CHM 511	Projet de trimestre	6
COR 400	Chimie organique III	3
COR 401	Chimie organique IV	3
COR 501	Synthèse organique	3
COR 508	Nouveaux réactifs en chimie organique	3

Activités pédagogiques à option (6 crédits)

Choisies parmi les activités du programme non délà choisies

Mineure en chimie

(819) 821-7078 (téléphone) (819) 821-8017 (télécopieur) zamojska@courrier.usherb.ca (adresse electronique)

RESPONSABILITÉ : Département de chimie, Faculté des sciences

ADMISSION

Conditions particulières

Bloc d'exigences 10.9 soit : Mathématiques 103, 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

CRÉDITS EXIGÉS: 30

PROFIL DES ÉTUDES

Pour les étudiantes et les étudiants inscrits au programme de baccalauréat en philosophie ou au programme de baccalauréat multidisciplinaire

Activités pédagogiques obligatoires (19 crédits)

		CR
CAN 300	Chimie analytique	3
CAN 305	Méthodes quantitatives de la chimie	
	- Travaux pratiques	2
CHM 302	Techniques de chimie organique et	
	inorganique - Travaux pratiques	3
CIQ 300	Chimie inorganique I	3
COR 200	Introduction à la chimie organique	2
COR 306	Chimie organique	2
CPH 311	Chimie physique	4

Activités pédagogiques à option (11 crédits)

Choisies parmi les activités pédagogiques de sigle BCM, CAN, CHM ou CIQ du programme de baccalauréat en chimie, incluant aussi CPH 305.

Baccalauréat en informatique

(819) 821-8000, postes 2033 ou 2011 (téléphone) (819) 821-8200 (télécopieur) secretaire@dml.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Bachelière ou bachelier ès sciences, B.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir des concepts fondamentaux de l'informatique, notamment le traitement de l'information, les architectures des systèmes informatiques, l'analyse, la programmation, l'informatique théorique et les langages de programmation;
- de maîtriser des outils logiques et mathématiques développant l'esprit d'analyse et favorisant l'acquisition des techniques nécessaires en informatique:
- de développer sa capacité à concevoir et à réaliser des produits fiables, généraux et lisibles;
- de se familiariser avec divers problèmes classiques et à l'implantation matérielle de leurs solutions;
- d'acquérir une expérience du développement et de l'utilisation de logiciels modernes et de laboratoires adaptés : systèmes d'exploitation, bases de données, infographie, télématique, construction des compilateurs, traitement parallèle et réparti, intelligence artificielle:
- de se sensibiliser aux exigences de communication et au contexte de l'utilisation de l'informatique en situations concrètes : problèmes de dialogue concepteur-utilisateur, problèmes liés à la conduite de projets et à l'organisation du travail;
- d'acquérir, par les stages coopératifs, une expérience de participation productive à la conception et à la mise en œuvre d'applications dans les entreprises.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1e cycle de l'Université (cf. Règlement des études)

Condition particulière

Bloc d'exigences 10.12 soit : Mathématiques 103, 105 et 203

RÉGIMES DES ÉTUDES

Régime coopératif à temps complet et régime régulier à temps complet ou à temps partiel

MODALITÉS DU RÉGIME COOPÉRATIF

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

	1re année		2e année		3e année			4e année			
	AUT	ніу	ÉTÉ	AUT	ніv	ÉTÉ	ΑUT	HIV	ÉTÉ	AUT	ні∨
GR A	S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	T-4	S-6	-
GR B	S-1	T-1	S-2	T-2	S-3	S-4	T-3	S-5	T-4	S-6	-
GR C	٠	S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	T-4	S-6

MODALITÉS DU RÉGIME RÉGULIER

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) est le suivant :

1re année			2e année			3e année			4e année
AUT	ніу	ÉTÉ	AUT	ніV	ÉTÉ	AUT	нгу	ÉTÉ	AUT
S-1	S-2	-	S-3	S-4	-	S-5	S-6	-	-
•	S-1	S-2		S-3	S-4	-	S-5		S-6
٠	S-1	S-2	S-3	-	S-4	S-5	S-6		•

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (51 crédits)

			Cn
IFT	159	Analyse et programmation	3
IFT	178	Traitement de données	3
IFT	249	Programmation interne des ordinateurs	3
IFT	286	Laboratoire de bases de données	3
IFT	311	Informatique théorique	3
IFT	319	Systèmes de programmation	3
IFT	339	Structures de données	3
IFT	359	Programmation fonctionnelle	3
IFT	448	Organisation d'un ordinateur	3
IFT	451	Théorie des langages de programmation	3
MAT	113	Logique et mathématiques discrètes	3
MAT	133	Calcul différentiel	3
MAT	182	Algèbre linéaire	3
MAT	233	Calcul intégral	3
MAT	235	Algèbre appliquée	3
STT	279	Probabilités et statistique I	3
STT	379	Probabilités et statistique II	3

Activités pédagogiques à option (36 crédits)

Choisies parmi les activités suivantes :

			CR
IFT	324	Génie logiciel	3
IFT	428	Infographie	3
IFT	438	Algorithmique	3
IFT	459	Concepts de langages de programmation	3
IFT	460	Circuits logiques	3
1FT	486	Bases de données	3
IFT	515	Interfaces et multimédia	3
IFT	518	Systèmes d'exploitation I	3
IFT	528	Synthèse d'images	3
IFT	539	Analyse d'images	3
IFT	578	Processeurs de langages	3

Télématique	3
	3
	3
	3
	3
	3
	3
	3
Architectures d'ordinateurs	3
B Algorithmes parallèles	3
Systèmes répartis	3
Projet d'informatique II	3
Modèles mathématiques	3
Méthodes numériques I	3
Méthodes numériques II	3
Programmation linéaire	3
Modèles de la recherche opérationnelle	3
	2 Projet d'informatique I 3 Simulation de systèmes 5 Intelligence artificielle 8 Performance des systèmes informatiques 7 Fiabilité et sûreté des systèmes 8 Systèmes d'exploitation II 9 Calculabilité et décidabilité 9 Architectures d'ordinateurs 9 Algorithmes parallèles 9 Systèmes répartis 9 Projet d'informatique II 9 Modèles mathématiques 9 Méthodes numériques II 9 Programmation linéaire

Activités pédagogiques au choix (3 crédits)

Baccalauréat en informatique de gestion

(819) 821-8000, postes 2033 ou 2011 (téléphone) (819) 821-8200 (télécopieur) secretaire@dmi.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Bachelière ou bachelier ès sciences, B.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir les connaissances du matériel, du traitement et des structures de données, de la programmation et des langages de programmation, des techniques de résolution de problèmes, des normes de qualité et de documentation des systèmes informatiques;
- d'acquérir des habiletés, d'une part, à bâtir des programmes à la fois fiables, efficaces et faciles à utiliser, à comprendre et à modifier et, d'autre part, à développer des logiciels et des systèmes informatiques répondant à des spécifications claires et précises:
- d'acquérir des connaissances pratiques des outils informatiques modernes : base de données, télématique, microordinateurs, systèmes d'exploitation, infographie, intelligence artificielle;
 d'apprendre à représenter différentes situations à l'aide d'outils
 - d'apprendre à représenter différentes situations à l'aide d'outils mathématiques comme la statistique, la recherche opérationnelle et la simulation et à tirer profit des modèles ainsi construits pour résoudre des problèmes de gestion;
- d'acquérir des connaissances sur les différents types d'organisation, sur les processus organisationnels et les processus de prise de décision ainsi que sur le rôle de l'informatique dans ces systèmes et processus;
- d'acquérir des habiletés, d'une part, à définir les besoins d'information des organisations et, d'autre part, à proposer et à mettre en oeuvre un système informatique répondant à ces besoins;
- de développer ses aptitudes à travailler en équipe, à gérer des projets de conception et de développement d'applications informatiques et à communiquer efficacement avec d'autres personnes dans le but de spécifier les besoins des usagers, d'expliquer et de faire retenir la solution technique proposée;
- d'acquérir, par les stages coopératifs, une expérience de participation productive à la conception et à la mise en oeuvre d'applications dans les entreprises.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1° cycle de l'Université (cf. Règlement des études)

Condition particulière

Bloc d'exigences 10.12 soit : Mathématiques 103, 105 et 203

81.01 soit détenir un diplôme d'études collégiales (DEC) en technologie des systèmes ordinés, en techniques administratives ou en informatique et avoir complété le cours de niveau collégial mathématiques 103 ou 271 ou leur équivalent.

RÉGIME DES ÉTUDES

Régime coopératif à temps complet

MODALITÉS DU RÉGIME COOPÉRATIF

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

	1n	1re année 2e ani		anne	ée .	e 3e année			4e année		
	AUT	ніу	ÉTÉ	AUT	HIV	ÉTÉ	AUT	ніх	ÉTÉ	AUT	ні
GR A	S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	T-4	S-6	·
GR B	S-1	T ₅ 1	S-2	T-2	S-3	S-4	T-3	S-5	T-4	S-6	-
GR C		S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	T-4	S-6

CRÉDITS EXIGÉS : 90

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (75 crédits)

ADM 111 Principes d'administration	
CTB 111 Introduction à la comptabilité	
FEC 222 Éléments de gestion financière	
FEC 401 Environnement externe de l'entreprise	
GRH 111 Aspects humains des organisations	
GRH 221 Gestion du personnel et relations	
industrielles	
IFT 159 Analyse et programmation	
IFT 178 Traitement de données	
IFT 249 Programmation interne des ordinateurs	
IFT 286 Laboratoire de bases de données	
(FT 324 Génie logicie)	
IFT 339 Structures de données	
IFT 359 Programmation fonctionnelle	
IFT 379 Principes des systèmes d'exploitation	
IFT 424 Laboratoire de génie logiciel	
IFT 486 Bases de données	
IFT 514 Gestion de systèmes informatiques	
MAR 221 Marketing	
MAT 113 Logique et mathématiques discrètes	
MAT 125 Calcul différentiel et intégral	
MAT 182 Algèbre linéaire	
MAT 235 Algèbre appliquée	
MQG342 Gestion des opérations	
ROP 641 Introduction à la recherche	
opérationnelle	
STT 418 Statistique appliquée	

Activités pédagogiques à option (15 crédits)

De 6 à 15 crédits choisis parmi les activités pédagogiques suivantes :

			CR
IFT	311	Informatique théorique	3
IFT	448	Organisation d'un ordinateur	3
IFT	459	Concepts de langages de programmation	3
IFŤ	515	Interfaces et multimédia	3
IFT	524	Systèmes d'information dans les	
		entreprises	. 3
IFT	548	Infographie appliquée	3
IFT	585	Télématique	. 3 3 3
IFT	598	Simulation de systèmes	3
IFT	614	Contrôle et vérification des systèmes	
		informatiques	3
IFT	615	Intelligence artificielle	3
IFT		Fiabilité et sûreté des systèmes	3 3 3
MAT	437	Méthodes numériques l	3
De () à 6 c	rédits choisis parmi les activités nédagogiques	

De 0 à 6 crédits	choisis p	armi les a	ictivitės p	édagogiques
suivantes :				

				CR
IFT	438	Algorithmique		3
IFT	592	Projet d'informatique I		3
IFT	628	Systèmes d'exploitation II		3
IFT	631	Calculabilité et décidabilité		3
IFT	648	Architectures d'ordinateurs		3
IFT	689	Systèmes répartis		3
IFT	692	Projet d'informatique II		3

De 0 à 3 crédits choisis parmi les activités pédagogiques

		CR
CTB 301	Éléments de fiscalité	3
CTB 331	Éléments de comptabilité de management	3
FEC 333	Analyse des décisions financières	3
GRH 332	Planification et sélection	3
INS 144	Travail autonome et informatique	. 3
MAR 331	Comportement du consommateur	3
RED 210	Rédaction technique	` 3

Baccalauréat en mathématiques

(819) 821-8000, postes 2033 ou 2011 (téléphone) (819) 821-8200 (télécopieur) secretaire@dml.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Bachelière ou bachelier ès sciences, B.Sc.

Le baccalauréat en mathématiques permet un cheminement spécialisé sans concentration, un cheminement spécialisé incluant l'une des deux concentrations suivantes : statistiques ou recherche opérationnelle et un cheminement avec mineure en économiaue.

OBJECTIFS

CR 3

3 3

3 3

3 3

3

3

3

333

333

3

3

3

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir une formation générale en mathématiques axée vers le développement de sa curiosité scientifique et de son esprit
- de développer les qualités nécessaires à la pratique des mathématiques : capacité d'abstraction, de déduction logique, de généralisation et d'imagination, de construction et d'induction, d'apprendre à situer l'activité mathématique dans le processus
- d'explication scientifique « situation-modèle-théorie » qui constitue la base de la méthode scientifique;
- de se préparer au marché du travail ou à la poursuite d'études supérieures en acquérant une formation spécialisée en mathématiques ou en mathématiques-statistiques ou en mathématiques-recherche-opérationnelle;

CR

CR

- d'acquérir des savoir-faire de type professionnel en statistiques et en recherche opérationnelle et informatique, notamment par des études de cas;
- de reconnaître l'écart entre les impératifs à court terme du travail dans les entreprises et les besoins à long terme de la société;
- de développer une attitude favorisant le rapprochement de la théorie et de la pratique en vue de la nécessaire coopération entre l'industrie et l'université.

Pour les étudiantes et les étudiants qui choisissent le régime coopératif :

 faire, par des stages dans l'entreprise, l'apprentissage progressif de la pratique professionnelle en situation de travail.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1° cycle de l'Université (cf. Règlement des études)

Conditions particulières

Bloc d'exigences 10.12 soit :

Mathématiques 103, 105 et 203

QU

Bloc d'exigences 12.31 soit :

Détenir un diplôme d'études collégiales (DEC) en formation professionnelle ou l'équivalent et avoir complété les cours de niveau collégial Mathématiques 103, 105 et 203 ou leur équivalent.

RÉGIMES DES ÉTUDES

Régime régulier à temps complet ou à temps partiel et régime coopératif optionnel à temps complet pour les programmes de mathématiques avec concentration statistiques ou recherche opérationnelle.

MODALITÉS DU RÉGIME COOPÉRATIF

1re année			26	anné	ie	3e année 4e anné			nnée	
AUT	HIV	ÉTÉ	AUT	HIV	ÉTÉ	AUT	HIV	ÉTÉ	AUT	HIV
S-1	S-2	T-1	S-3	T-2	S-4	T-3	S-5	T-4	\$-6	

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

TRONC COMMUN

Activités pédagogiques obligatoires (39 crédits)

			CR
IFT	157	Traitement numérique et symbolique de	
		l'information	3
IFT	159	Analyse et programmation	3
MAT	121	Algèbre I	3
MAT	128	Éléments d'analyse	3
MAT	134		3
MAT	143		3
MAT	228		3
			3
MAT	345	Complément d'analyse	3
ROP	217		3
			3
STT	279		3
STT	379	Probabilités et statistique II	3
	IFT MAT MAT MAT MAT MAT MAT ROP ROP STT	IFT 159 MAT 121 MAT 128 MAT 134 MAT 143 MAT 228 MAT 243 MAT 345 ROP 217 ROP 317 STT 279	l'information IFT 159 Analyse et programmation MAT 121 Algèbre I MAT 128 Éléments d'analyse MAT 134 Mathématiques discrètes MAT 134 Algèbre linéaire I MAT 228 Techniques d'analyse mathématique MAT 243 Algèbre linéaire II MAT 245 Complément d'analyse ROP 217 Introduction à la recherche opérationnelle ROP 317 Programmation linéaire STT 279 Probabilités et statistique I

PROGRAMME SPÉCIALISÉ AVEC CHEMINEMENT SANS CON-CENTRATION

39 crédits d'activités pédagogiques obligatoires du tronc commun

 51 crédits d'activités pédagogiques obligatoires, à option ou au choix suivantes :

Activités pédagogiques obligatoires (27 crédits)

		CR
MAT 321	Algèbre II	3
MAT 324	Modèles mathématiques	3
MAT 334	Topologie générale	3
MAT 421	Ensembles ordonnés	3
MAT 424	Fonctions complexes	3
MAT 437	Méthodes numériques I	3
MAT 453	Calcul différentiel et intégral dans R°	3
MAT 521	Anneaux et modules	3
MAT 534	Intégration et théorie des fonctions	3

Activités pédagogiques à option (18 à 24 crédits)

Choisies parmi les activités suivantes :

IFT	311	Informatique théorique	3
IFT	359	Programmation fonctionnelle	3
MAT	523	Initiation à la recherche mathématique	3
MAT	526	Équations différentielles	3
MAT	527	Méthodes numériques II	
MAT	543	Éléments de combinatoire	3 3 3
MAT	622	Théorie des corps	3
MAT	623	Topologie algébrique	3
MAT	644	Théorie des fonctions et espaces	_
		fonctionnels	3
MAT	656	Fondements de la géométrie	3
	637	Calcul variationnel et théorie du contrôle	3
ROP	640	Modèles de la recherche opérationnelle	
STT	563	Modèles statistiques linéaires	3
STT	629	Processus stochastiques	3
STT	639	Mesure et probabilité	3 3 3 3
		F	•

Activités pédagogiques au choix (0 à 6 crédits)

PROGRAMME SPÉCIALISÉ AVEC CHEMINEMENT INCLUANT UNE CONCENTRATION

- 39 crédits d'activités pédagogiques obligatoires du tronc commun
- 51 crédits d'activités pédagogiques obligatoires, à option ou au choix suivantes :

STATISTIQUES

Activités pédagogiques obligatoires (39 crédits)

MAT 321	Algèbre II	3
MAT 324	Modèles mathématiques	3
MAT 424	Fonctions complexes	3
MAT 437	Méthodes numériques I	3
MAT 453	Calcul différentiel et intégral dans R ⁿ	3
ROP 630	Programmation non linéaire	3
STT 479	Probabilités et statistique III	3
STT 520	Théorie de la décision	3
STT 521	Théorie de l'échantillonnage	3
STT 563	Modèles statistiques linéaires	3
STT 564	Modèles statistiques multidimensionnels	3
STT 629	Processus stochastiques	3
STT 639		3
	•	

Activités pédagogiques à option (12 crédits)

STT 522 Séries chronologiques

Au moins deux activités pédagogiques parmi les suivantes :

STT	619	Introduction à la consultation statistique	3
STT	679	Méthodes non paramétriques	3
		and the second second	
Au pi	us det	x activités pédagogiques parmi les suivantes :	
			CR
IFT	311	Informatique théorique	3
IFT	339	Structures de données	3
IFT	359	Programmation fonctionnelle	3
IFT	598	Simulation de systèmes	3
MAT		Topologie générale	3
MAT			
		Initiation à la recherche mathématique	3
MAT		Équations différentielles	3
MAT	527	Méthodes numériques II	3

ROP 530	Programmation en nombres entiers	3
ROP 637	Calcul variationnel et théorie du contrôle	3
ROP 640	Modèles de la recherche opérationnelle	3
	·	

RECHERCHE OPERATIONNELLE

Activités pédagogiques obligatoires (39 crédits)

			CK			
IFT	339	Structures de données	3			
IFT	359	Programmation fonctionnelle	3			
IFT	428	Infographie	3			
MAT	321	Algèbre II	3			
MAT	324	Modèles mathématiques	3 3 3 3			
MAT	437	Méthodes numériques I	3			
MAT	453	Calcul différentiel et intégral dans R ⁿ	3			
MAT	526	Équations différentielles	3			
MAT	527	Méthodes numériques II	3			
ROP	530	Programmation en nombres entiers	. 3 3			
ROP	630	Programmation non linéaire	3			
ROP	640	Modèles de la recherche opérationnelle	3			
STT	479	Probabilités et statistique III	3			
Acth	Activités nédegogiques à antion (6 à 12 crédits)					

Activités pédagogiques à option (6 à 12 crédits)

Au moins une activité pédagogique parmi les suivantes :

CH
3
3
3

Au moins une activité pédagogique parmi les suivantes :

			CR
IFT	311	Informatique théorique	3
IFT	528	Synthèse d'images	3
IFT	598	Simulation de systèmes	3

Activités pédagogiques au choix (0 à 6 crédits)

CHEMINEMENT INCLUANT LA MINEURE EN ÉCONOMIQUE

- · 30 crédits d'activités pédagogiques de la mineure en économi-
- 39 crédits d'activités pédagogiques obligatoires du tronc commun
- 21 crédits d'activités pédagogiques obligatoires et à option suivantes :

Activités pédagogiques obligatoires (6 crédits)

		Ct
MAT 324	Modèles mathématiques	3
MAT 437	Méthodes numériques I	3

Activités pédagogiques à option (15 crédits)

Choisies parmi les activités pédagogiques offertes dans le programme de baccalauréat en mathématiques.

Mineure en mathématiques

(819) 821-8000, postes 2033 ou 2011 (téléphone) (819) 821-8200 (télécopieur) secretaire@dml.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

ADMISSION

Condition particulière

Bloc d'exigences 10.12 soit : Mathématiques 103, 105 et 203

CRÉDITS EXIGÉS: 30

PROFIL DES ÉTUDES

Pour les étudiantes et les étudiants inscrits aux programmes de baccalauréat en économique, en géographie, en philosophie ou multidisciplinaire.

Activités pédagogiques à option (30 crédits)

Choisies parmi les activités suivantes :

		Ln
IFT 159	Analyse et programmation	3
IFT 311	Informatique théorique	3
MAT 121	Algèbre I	3
MAT 128	Éléments d'analyse	3
MAT 134	Mathématiques discrètes	3
MAT 143	Algèbre linéaire I	3
MAT 228	Techniques d'analyse mathématique	3 3 3 3 3
MAT 243	Algèbre linéaire II	3
MAT 324	Modèles mathématiques	3
MAT 421	Ensembles ordonnés	3
MAT 437	Méthodes numériques I	3
ROP 217	Introduction à la recherche opérationnelle	3
ROP 317	Programmation linéaire	3
STT 279	Probabilités et statistique I	3 3 3
STT 379	Probabilités et statistique II	3

Baccalauréat en physique

(819) 821-7055 (téléphone) (819) 821-8048 (télécopieur)

dep-phys@physique.usherb.ca (adresse électronique)

RESPONSABILITÉ: Département de physique, Faculté des sciences

GRADE: Bachelière ou bachelier ès sciences, B.Sc.

Le baccalauréat en physique permet soit un cheminement sans module, soit un cheminement avec un module en microélectronique.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- de maîtriser les concepts de base et les lois fondamentales de la physique, autant dans leurs énoncés phénoménologiques que dans leurs formulations abstraites;
- de se familiariser à différents domaines contemporains de recherche ou d'application;
- d'approfondir, si elle ou il le désire, le champ d'application multidisciplinaire qu'est la microélectronique;
- de savoir faire un usage judicieux des outils mathématiques et informatiques ainsi que des techniques expérimentales de la physique moderne;
- de savoir mettre en pratique la méthode scientifique;
- de développer des qualités professionnelles.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 1^{er} cycle de l'Université (cf. Règlement des études)

Conditions particulières

Bloc d'exigences 10.10 soit Mathématiques 103, 105 et 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

ou Bloc d'exigences 12.73 soit : Détenir un diplôme d'études collégiales (DEC) professionnel ou

Detenir un diplome d'études collégiales (DEC) professionnel ou l'équivalent et avoir complété les cours de niveau collégial ou leur équivalent :

Mathématiques 103, 105 et 203 Physique 101, 201 et 301-78

RÉGIMES DES ÉTUDES

Régime régulier à temps complet ou à temps partiel et régime coopératif à temps complet

MODALITÉS DU RÉGIME COOPÉRATIF

Normalement, selon le trimestre où l'étudiante ou l'étudiant s'inscrit en première session, l'agencement des sessions d'études (S) et des stages de travail (T) est le suivant :

	1re année Ze année		ie	Je ennée			4e année						
	AUT	ні	ÉTÉ	AUT	ни	ÉTÉ	AUT	HIV	ÉTÉ	AUT	ни	ÉTÉ	AUT
Régulier	S-1	S-2	-	5-3		Ş-4	\$-5	S-8		$\overline{}$			
Coopératif	S-1	5-2		53	T-1	\$ 4	T-2	S-6	1-3	S-6			
Régulier	•	S-1°		5-2	5-3		54		S-5	S-6	S-7	·	
Coopératif	ŀ	S-1*	·	S-2	S-3	·	S-4	T-1	S-6	1-5	S-6	T-3	S-7

L'inscription en 1st session au trimestre d'hiver implique que l'étudiante ou l'étudiant devra normalement faire sept sessions d'études plutôt que six pour compléter le baccalauréat.

CRÉDITS EXIGÉS: 90

PROFIL DES ÉTUDES

TRONC COMMUN

Activités pédagogiques obligatoires (63 crédits)

		CH
IFT 159		3
MAT 193	Algèbre linéaire	3 3
MAT 194	Calcul différentiel et intégral I (1)	3
MAT 291	Calcul différentiel et intégral II	3
MAT 297		3
PHQ 110	Mécanique I	3
PHQ 120	Optique et ondes	3
PHQ 210		3
PHQ 220	Électricité et magnétisme	3
PHQ 260	Travaux pratiques I	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
PHQ 310	Mécanique II	3
PHQ 330	Mécanique quantique I	3
PHQ 340	Physique statistique I	3
PHQ 350		3
PHQ 360	Travaux pratiques II	3
PHQ 420		3
PHQ 430	Mécanique quantique II	3
PHQ 440	Physique statistique II	3
PHQ 460		3
PHQ 560	Travaux pratiques avancés (3 3 3 3
PHQ 660	Travaux pratiques avancés II	3

CHEMINEMENT SANS MODULE

- 63 crédits d'activités pédagogiques obligatoires du tronc commin
- 27 crédits d'activités pédagogiques à option ou au choix suivantes :

Activités pédagogiques à option (21 crédits)

Choisies parmi les activités suivantes :

		ĊR
PHQ 399	Histoire des sciences	3
PHQ 405	Méthodes numériques et simulations	3
PHQ 505	Méthodes de physique théorique	3
PHQ 525	Ondes électromagnétiques	3
PHQ 535	Compléments de mécanique quantique	3
PHQ 536	Physique atomique et moléculaire	3
PHQ 575	Optique moderne	3
PHQ 585	Physique du solide	3
PHQ 615	Relativité générale	3
PHQ 635	Mécanique quantique III	3
PHQ 636	Physique subatomique	3
PHQ 675	Physique des plasmas	3
PHQ 676	Astrophysique	3
PHQ 677	Hydrodynamique et phénomènes non linéaires	3

Activités pédagogiques au choix (6 crédits)

CHEMINEMENT INCLUANT LE MODULE DE MICROÉLECTRO-NIQUE

- 63 crédits d'activités pédagogiques obligatoires du tronc commun
- 27 crédits d'activités pédagogiques obligatoires, à option ou au choix suivantes :

Activité pédagogique obligatoire (3 crédits)

PHQ 585	Physique du solide	CR 3

Activités pédagogiques à option (18 crédits)

Quatre activités parmi les suivantes :

G

G

G

PI PI

			LH
EΙ	336	Introduction à la microélectronique	3
EΙ	340	Conception de circuits intégrés VLSI	3
EΙ	346	Fabrication de circuits intégrés	3
EΙ	400	Circuits logiques	3
HQ	555	Physique des composants électroniques	3
HΩ	575	Optique moderne	3

Deux activités choisies parmi les activités pédagogiques à option du programme spécialisé avec cheminement sans module.

Activités pédagogiques au choix (6 crédits)

(1) MAT 194 est remplacé par MAT 195 Calcul différentiel et intégral pour les étudiantes et les étudiants admis en 1ª session au trimestre d'hiver.

Mineure en physique

(819) 821-7055 (téléphone)

(819) 821-8046 (télécopieur)

dep-phys@physique.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de physique, Faculté des sciences

ADMISSION

Conditions particulières

Bloc d'exigences 10.10 soit : Mathématiques 103, 105 et 203 Physique 101, 201, 301-78 Chimie 101, 201 Biologie 301

CRÉDITS EXIGÉS: 30

CR

CR

PROFIL DES ÉTUDES

Pour les étudiantes et les étudiants inscrits au programme de baccalauréat en philosophie ou au baccalauréat multidisciplinaire

Activités pédagogiques à option (30 crédits)

Choisies parmi les activités suivantes :

IFT 15	59 Analyse e	t programmation 3
MAT 1	93 Algèbre lii	néaire 3
MAT 19	94 Calcul diff	érentiel et intégral I
MAT 2		érentiel et intégral II 3
MAT 2		ents de mathématiques
PHQ 1	10 Mécanique	e I
PHQ 1	20 Optique e	t ondes
PHQ 2	10 Phénomèi	nes ondulatoires
PHQ 2	20 Électricité	et magnétisme
PHQ 2		
PHQ 3		
PHQ 3		e quantique I
PHQ 3		statistique I
PHQ 4		statistique II

Maîtrise en biologie

(819) 821-7071 (téléphone)

(819) 821-8049 (télécopieur)

biologie@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de biologie, Faculté

des sciences

GRADE: Maître ès sciences, M.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances en biologie;
- d'amorcer une spécialisation dans un secteur de cette science;

de s'initier à la recherche.

ADMISSION

Condition générale

Grade de 1" cycle en biologie, en biochimie ou l'équivalent.

Condition particulière

Avoir une moyenne cumulative d'au moins 2,7 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. Le Faculté peut néanmoins admettre une candidate ou un candidat ne satisfaisant pas à cette condition particulière d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINES DE RECHERCHE

Botanique et physiologie végétale, microbiologie et virologie, écologie végétale et animale, biologie cellulaire et moléculaire.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (38 crédits)

		•	CH
BIO	798	Activités de recherche	20
BIO	799	Mémoire	16
PBI	700	Séminaire de recherche I	1
PBI	702	Séminaire de recherche II	1

Activités pédagogiques selon les domaines de recherche

BIOLOGIE CELLULAIRE ET MOLÉCULAIRE

Activité pédagogique obligatoire (2 crédits) CR RBL 700 Radiobiologie 2

Activités pédagogiques à option (0 à 5 crédits)

Choisies parmi les activités suivantes :

BCL	720	Sujets spéciaux (biologie cellulaire)	1
BCM	702	Les acides nucléiques	2
BCM	714	Biochimie des protéines	3
MCB	710	Biologie des actinomycètes	1
PBI	721	Sujets spéciaux (biotechnologie)	1
PBI	724	Interactions scientifiques I	2
PSL	705	Biologie de la lactation	3
PSV	700	Physiologie végétale II	2
PSV	702	Physiologie végétale III	2
PTV	702	Interactions plantes-microorganismes	2
TSB	701.	La culture de cellules et de tissus	2

Activités pédagogiques au choix (0 à 5 crédits)

ÉCOLOGIE

CR

Activité pédagogique obligatoire (2 crédits)

ECL 722 Écologie théorique

Activités pédagogiques à option (0 à 5 crédits)

Choisies parmi les activités suivantes :

		•	CF
ECL	706	Écologie des oiseaux	2
ECL	708	Écologie végétale avancée	, 2
ECL	710	Écologie et comportement	2
ECL	716	Mammalogie avancée	2
ECL	720	Sujets spéciaux (écologie)	1
ECL	726.	Éco-physiologie avancée	2
ECL	727	Analyses des données écologiques	1
EÇL	750	Analyses avancées des données écologiques	2
PBł	724	Interactions scientifiques I	2

Activités pédagogiques au choix (0 à 5 crédits)

MICROBIOLOGIE

Activité pédagogique obligatoire (2 crédits)

RBL 700 Radiobiologie

Activités pédagogiques à option (0 à 5 crédits)

Choisies parmi les activités suivantes :

	•	CH
BCM 702	Les acides nucléiques	. 2
BCM 714	Biochimie des protéines	. 3
MCB 710	Biologie des actinomycètes	1
MCB 720	Sujets spéciaux (microbiologie)	1
PBI 724	Interactions scientifiques I	2
PTV 702	Interactions plantes-microorganismes	2
TSB 701	Le culture de cellules et de tissus	2

Activités pédagogiques au choix (0 à 5 crédits)

CR

Maîtrise en chimie

(819) 821-7088 (téléphone) (819) 821-8017 (télécopieur)

alasia@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de chimle, Faculté des

GRADE: Maître ès sciences, M.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances en chimie;
- d'amorcer une spécialisation dans un secteur de cette science;
- de s'initier à la recherche.

ADMISSION

Condition générale

Grade de 1e cycle en chimie ou en biochimie ou l'équivalent.

Condition particulière

Avoir une moyenne cumulative d'au moins 2,7 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. La Faculté peut néanmoins admettre une candidate ou un candidat ne satisfaisant pas à cette condition particulière d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINES DE RECHERCHE

Chimie analytique et appliquée; chimie organique et pharmaceutique; chimie inorganique; chimie des polymères; chimie des solutions et des interfaces; chimie théorique; chimie structurale et spectroscopie moléculaire; électrochimie.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (36 crédits)

		CR
CHM 701	Séminaire I	2
CHM 798	Activités de recherche	20
CHM 799	Mémoire	14

Activités pédagogiques à option (9 crédits)

Choisies parmi les activités suivantes :

ополого р	arrain los sotratios cervanicos i	CD
		CR
CAN 700	Séparations chromatographiques	3
CAN 701	Méthodes électroanalytiques	3
CAN 702	Spectroscopie analytique	3
CHM 703	Électrochimie organique	3
CHM 704	Électrochimie avancée	3
CHM 707	Photochimie et chimie radicalaire	3
CIQ 700	Symétrie et structure moléculaire	3
CIQ 701	Chimie inorganique avancée	3
COR 700	Chimie organique avancée	3
COR 701	Chimie physico-organique avancée	3
COR 702	Orbitales moléculaires en chimie organique	3
COR 703	Résonance magnétique	3
CPH 700	Chimie des interfaces	3

CPH 701	Chimie des solutions	3
CPH 702	Thermodynamique statistique	3
CPH 706	Chimie théorique et modélisation moléculaire	3
CPH 708	Polymères et systèmes polymériques	3
CPH 787	Sujets de pointe en chimie physique	3
CPH 790	Spectroscopie avancée	3
GCH 740	Techniques de caractérisation des matériaux	3

Avec l'approbation de la directrice ou du directeur de recherche, l'étudiante ou l'étudiant peut choisir des activités pédagogiques à option parmi toutes celles de 2° et 3° cycles offertes par l'Université.

Maîtrise en environnement

(819) 821-7933 (téléphone) (819) 821-6909 (télécopieur)

mattrise.environnement@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Faculté de génie, Faculté des lettres et sciences humaines, Faculté de médecine, Faculté des sciences

GRADE: Maître en environnement, M.Env.

La Maîtrise en environnement permet un cheminement de type cours ou un cheminement de type recherche.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir, par un approfondissement de ses connaissances disciplinaires de 1^{er} cycle, une compétence appliquée à l'environnement;
- d'acquérir une formation, complémentaire à la formation première, dans des disciplines pertinentes au domaine de l'environnement;
- d'établir une stratégie intégrée d'étude ou de recherche appliquée à l'environnement;
- de saisir les valeurs éthiques impliquées dans les problématiques environnementales de façon à les prendre en compte dans la résolution de problèmes;
- de définir des priorités d'action dans la résolution des problèmes environnementaux;
- de devenir progressivement maître de son apprentissage afin d'être préparé à suivre, tout au long de sa carrière, l'évolution de plus en plus rapide de la science et de la technologie;
- de développer, le cas échéant, par le choix du cheminement de type recherche, des aptitudes à la recherche interdisciplinaire appliquée à l'environnement;
- d'acquérir, le cas échéant, par le choix du cheminement de type cours, des outils pour la définition et la solution de problèmes concrets dans une perspective interdisciplinaire.

ADMISSION

Condition générale

Grade de 1° cycle dans une discipline ou un champ d'études pertinent au programme. Les candidates et les candidats qui ne répondent pas à cette condition peuvent être admis sur la base d'une formation ou d'une expérience jugée satisfaisante.

Condition particulière

Avoir une moyenne cumulative d'au moins 3 dans un système où la note maximale est de 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. (1)

UNIVERSITÉ C	DE SHERBROOKE				FACULTÉ DES SCIEN	ICES
RÉGIA	AE DES ÉTUDES		ECL	516	Écologie animale	3
ALG.	NL DES E10DES		ECL		Conservation et gestion des ressources	3
	CATE DE TATE AND INC		ENV		Systèmes de gestion environnementale	3
	IENT DE TYPE COURS		ENV		Vérification environnementale	3
Régime régi tiel	ulier à temps complet ou régime régulier à temps	par-	ENV		Indicateurs environnementaux	3
CHEMINEN	IENT DE TYPE RECHERCHE		Bloc	2 : Sc	iences appliquées	CŘ
	ulier à temps complet (le régime régulier à temps	nar-	ENV	721	Gestion des risques environnementaux	3
	sible dans certains cas particuliers soumis à l'appre		ENV	743	Évaluation environnementale de site	3 3
tion de la Di	irection du programme)		GCH		Traitement de la pollution de l'air	3
			GCH GCH		Traitement des eaux usées industrielles Procédés de traitement des eaux usées	3
CRÉD	ITS EXIGES : 45		GCI		Génie de l'environnement	3
			GCI	555	Caractérisation des milieux contaminés	3 3 3 3
PROF	IL DES ÉTUDES		GCI GCI		Traitement biologique des eaux usées Géotechnique environnementale	3
			Bloc	3 : Sc	iences de la Terre	
CHEMINEN	IENT DETYPE COURS				E 1	CR
Activitée n	édagogiques obligatoires (12 crédits)		ENV	711	Environnement et développement international	3
ACTIVITOS P	budgogiques vangaceries (12 Grouns)	CR	ENV	756	Gestion des ressources naturelles	3
ENV 767	Essai .	6	GEO	304	Interprétation de cartes et de photos sériennes	33333333333333
ENV 777	Séminaire de formation professionnelle	3		400	Ecologie physique des bassins-versants	3
ENV 778	Formation professionnelle en entreprise	3	GEO	401 407	Géopédologie Cartographie expérimentale et thématique	3
	(-			415	Climatologie spécialisée et hydrométéorologie	3
Activites p	édagogiques à option (27 à 33 crédits)		GEO		Microclimatologie	3
D'aucune à	l'activité pédagogique suivante :			422	Climatologie urbaine et pollution de l'air	3
ENV 780	Store on equirencement	CR 3	GEO	437 440	Géomorphologie dynamique Hydrologie	3
EI44 190	Stage en environnement	3		604	Environnements littoraux	3
et des activ	ités choisies dans au moins quatre des cinq blocs	s	GEO		Climatologie : saisie de données, modélisation	3
	ec un maximum de neuf crédits par bloc au total d		Bloc	4 : Sc	ciences humaines	
Au moins u	ne activité dans quatre des cinq blocs suivants :		ECN!	447	Éis des reservans	CR
				447 717	Economie des ressources Communication en environnement	3333333333333
Section A	•			730	Économie de l'environnement	3
				733	Gestion de projet multidisciplinaire	3
Bloc 1 : Sci	iences			765 408	Éthique de l'environnement Aménagement régional	3
F104 700	*	CR		410	Utilisation du sol	3
ENV 722	Ecologie environnementale Chimie de l'environnement	3 3		423	Aménagement touristique	. 3
LINV 775	Cilinia de l'environnement	•		605	Aménagement urbain	3
Bloc 2 : Sc	iences appliquées			711 446	Projet en aménagement Psychologie de l'environnement	3
		CR	131	440	1 Sychologic do 1 chimomoritane	ŭ
ENV 716	Gestion des matières résiduelles	3	Bloc	5 : Sc	ciences de la santé environnementale	
ENV 761	Technologies de l'environnement : introduction	3				CR
	Introduction	3	SCL	717	Épidémiologie	3
Bloc 3 : Sci	iences de la Terre		A:-AI	. مکمان	addennal aver av shally (0 à 6 arádita)	
		CR	ACU	ALCOS	pédagogiques au choix (0 à 6 crédits)	
ENV 709 ENV 723	Télédétection appliquée à l'environnement Géomatique de l'environnement	3 3	CHE	MINE	MENT DE TYPE RECHERCHE	
	•	-			· · · · · · · · · · · · · · · · · · ·	
Bloc 4 : Sc	iences humaines	CR	Acti	vitės į	pédagogiques obligatoires (33 crédits)	CR
ENV 705	Études d'impacts et prospectives	3	ENV	776	Séminaire de recherche multidisciplinaire	3
ENV 762	Droit de l'environnement	3	ENV	796	Mémoire	15
				797	Projet de recherche en environnement	6
Bloc 5 : Sc	iences de la santé environnementale		FMA	798	Activités de recherche	9
CAR4 704	Éindicatorie	CR	Acti	vitás i	pédagogiques à option (9 à 12 crédits)	
ENV 764 ENV 769	Écotoxicologie Problématiques de santé environnementale	. 3				
2.11	Tropional que de dente divinementalis	•	Cno	isies a	ans au moins trois des cinq blocs suivants :	
sies dans le	activités pédagogiques à option ou au choix sont es cinq blocs suivants et de telle sorte que le tota	l des	Bloc	1 : S	ciences	CB
	ir un même bloc, au total des sections A et B, no neuf pour l'ensemble des activités pédagogiques.		ECI	402	Écologie aquatique	CR 2
hessa hes	pour l'oridornale des serrites peusgogiques.		ECL	403	Écologie aquatique - Travaux pratiques	1
Section B			ECL	510	Écologie végétale	3
	•			516 606	Écologie animale Conservation et gestion des ressources	. 3
Bloc 1 : Sc	iences			712	Systèmes de gestion environnementale	3
		CR		722	Écologie environnementale	3
ECL 402	Écologie aquatique	2	ENV	742	Vérification environnementale	3
ECL 403	Écologie aquatique - Travaux pratiques	1		773	Indicateurs environnementaux	3 3 3 3 3 3
ECL 510	Écologie végétale	3	EMA	775	Chimie de l'environnement	3
					•	

Bloc 2 : Sciences appliquées

			CR
ENV	716	Gestion des matières résiduelles	3
ENV	721	Gestion des risques environnementaux	3
ENV	743	Évaluation environnementale de site	3
ENV	761	Technologies de l'environnement :	
		introduction	3
GCH	540	Traitement de la pollution de l'air	3
GCH	545	Traitement des eaux usées industrielles	3
GCH	750	Procédés de traitement des eaux usées	3
GCI	515	Génie de l'environnement	3
GCI	555	Caractérisation des milieux contaminés	3
GCI	721	Traitement biologique des eaux usées	3
GCI	733	Géotechnique environnementale	3

Bloc 3 : Sciences de la Terre

ENV 709 ENV 711	Télédétection appliquée à l'environnement Environnement et développement
EINV /II	international
ENV 723	Géomatique de l'environnement
ENV 756	Gestion des ressources naturelles
GEO 304	Interprétation de cartes et de photos sériennes
GEO 400	Écologie physique des bassins-versants
GEO 401	Géopédologie

Cartographie expérimentale et thématique

GEO 407 GEO 415 Climatologie specialisée et hydrométéorologie GEO 420 Microclimatologie Climatologie urbaine et pollution de l'air

GEO 422 GEO 437 Géomorphologie dynamique **GEO 440** Hydrologie

GEO 604 Environnements littoraux

Climatologie : saisie de données, modélisation GEO 717

Bloc 4 : Sciences humaines

EÇN	447	Économie des ressources	3
ENV	705	Études d'impacts et prospectives	3
ENV	717	Communication en environnement	3
ĒΝV	730	Économie de l'environnement	3
ENV	733	Gestion de projet multidisciplinaire	3
ENV	762	Droit de l'environnement	3
ENV	765	Éthique de l'environnement	3
GEO	408	Aménagement régional	3
GEO	410	Utilisation du sol	3
GEO	423	Aménagement touristique	3
GEO	605	Aménagement urbain	3 3 3 3
GEO	711	Projet en aménagement	3
PSY	446	Psychologie de l'environnement	3

Bloc 5 : Sciences de la santé environnementale

		CR
ENV 764	Écotoxicologie	3
ENV 769	Problématiques de santé environnementale	3
SCL 717	Épidémiologie	3

Activités pédagogiques au choix (0 à 3 crédits)

(1) Les étudiantes et les étudiants qui désirent suivre les activités de la maîtrise en environnement offertes à l'extérieur de la ville de Sherbrooke doivent avoir complété et réussi le diplôme de gestion de l'environnement, en plus de répondre aux autres conditions d'admission.

Maîtrise en génie logiciel

(819) 821-8000, poste 1056 (téléphone) (819) 821-8200 (télécopieur) etudes-sup@dml.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE : Maître às sciences M Sc.

OBJECTIFS

CR

3

3 3

3333

3

3

CR

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances sur la structure et les principes supportant les outils et les méthodes utilisés pour spécifier. concevoir, implanter et maintenir les systèmes informatiques;
- d'approfondir ses connaissances sur les techniques de modélisation et de gestion des projets informatiques;
- de développer sa capacité d'écoute, de même que son expression orale et écrite, de façon à lui assurer une communication efficace avec les personnes qui feront appel à ses services;
- d'acquérir une méthode de recherche, grâce à l'élaboration et à la réalisation d'un projet de recherche sous la supervision d'une directrice ou d'un directeur de recherche:
- de développer la rigueur et le sens critique par l'analyse et la rédaction d'articles portant sur différents aspects du génie logiciel:
- de développer un esprit de synthèse et une certaine curiosité intellectuelle qui aideront à s'adapter continuellement dans un domaine en évolution rapide.

ADMISSION

Condition générale

Grade de premier cycle en informatique, en informatique de gestion, en génie informatique ou tout autre diplôme jugé équivalent.

Conditions particulières

Avoir une moyenne cumulative d'au moins 3 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. Avoir suivi avec succès au premier cycle au moins une activité portant sur le génie logiciel. La Faculté peut néanmoins admettre une candidate ou un candidat ne satisfaisant pas à ces conditions particulières d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINE DE RECHERCHE

Le génie logiciel et ses applications

PROFIL DES ÉTUDES

Activités nédeconiques obligatoires (39 crédits)

			CR
IFT	719	Processus de génie logiciel	3
iFT.	734	Méthodes formelles de spécification	3
IFT	752	Techniques de vérification et de validation	3
IFT	795	Séminaire	2
IFT	796	Activités de recherche	16
IFT	797	Mémoire	12

Activités pédagogiques à option (6 crédits)

Deux activités choisies parmi les suivantes :

15

ìF IF

Ces activités ont été regroupées sous trois thèmes : aspects fondamentaux du génie logiciel, conception et sujets spécialisés d'informatique.

Thème 1 : Aspects fondamentaux du génie logiciel

FT FT	720 721	Outils fondamentaux pour le génie logiciel Métriques des logiciels		2 3 3
FT	743 767	Fiabilité des systèmes Théorie de la complexité	•	3

			CR
IFT IFT	729 737	Conception des systèmes temps réel Conception des systèmes parallèles et	3
		distribués	3
IFT	747	Conception et gestion des systèmes d'information	3
IFT	785	Approches orientées objets	3
Thè	me 3 :	Sujets spécialisés d'informatique	
		•	CR
IFT	715	Interfaces personne-machine	3
IFT	723	Bases de données	3 3 3
IFT	724	Systèmes à base de connaissances	3
IFT	744	Sujets approfondis en télématique	3
IFT	787	Imagerie	3

Maîtrise en informatique

(819) 821-8000, poste 1056 (téléphone) (819) 821-8200 (télécopieur) etudes-sup@dml.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Maître ès sciences, M.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances en informatique;
- de s'initier à la recherche et d'amorcer une spécialisation dans un secteur de l'informatique;
- d'acquérir une méthode de recherche, grâce à l'élaboration et à la réalisation d'un projet de recherche sous la supervision d'une directrice ou d'un directeur de recherche;
- de développer la rigueur et le sens critique par l'analyse et la rédaction de textes scientifiques;
- de développer un esprit de synthèse et une certaine curiosité intellectuelle qui l'aideont à s'adapter continuellement dans un domaine en évolution rapide;
- de développer sa capacité d'écoute, de même que son expression orale et écrite, de façon à lui assurer une communication efficace avec les personnes qui feront appel à ses services.

ADMISSION

Condition générale

Grade de 1° cycle en informatique, en informatique de gestion, en génie informatique, en mathématiques appliquées, ou un diplôme jugé équivalent.

Condition particulière

Avoir une moyenne cumulative d'au moins 2,7 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. La Faculté peut néanmoins admettre une candidate ou un candidat ne satisfaisant pas à cette condition particulière d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités, pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINES DE RECHERCHE

Bases de données
Fiabilité des systèmes
Génie logiciel
Infographie
Informatique théorique
Intelligence artificielle
Réseaux neuronaux
Synulation des systèmes
Systèmes d'exploitation
Télématique
Théorie des langages
Vision par ordinateur

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (30 crédits)

				CR
IFT	790	Activités de recherche I		4
IFT	791	Activités de recherche II		4
IFT	792	Séminaire de maîtrise		2
1FT	793	Présentation de mémoire		7
IFT	794	Mémoire		13

Activités pédagogiques à option (15 crédits)

Cinq activités choisies parmi l'ensemble des activités pédagogiques suivantes : CR

IFT	715	Interfaces personne-machine	3 3 3 3 3 3 3 3
IFT	720	Outils fondamentaux pour le génie logiciel	3
IFT		Métriques des logiciels	3
1FT	722	Génie logiciel	3
IFT	723	Bases de données	3
IFT	724	Systèmes à base de connaissances	3
IFT	725	Réseaux neuronaux	3
IFT	729	Conception de systèmes temps réel	3
IFT	737	Conception des systèmes parallèles et	
		distribués	3
IFT	740	Programmation parallèle	3
IFT	743	Fiabilité des systèmes	3
IFT	744	Sujets approfondis en télématique	3 3 3 3
IFŢ	745	Simulation de modèles	3
IFŤ	747	Conception et gestion des systèmes	
		d'information	3
IFT	749	Sujets choisis en informatique de systèmes	3
IFT	761	Intelligence artificielle	3 3 3 3
IFT	762	Aspects numériques des algorithmes	3
IFT	763	Conception géométrique assistée par	
		ordinateur	3
IFT	764	Outils mathématiques du traitement du signal	3 3 3 3
IFT	765	Algorithmique	3
IFT	767	Théorie de la complexité	3
IFT	769	Sujets choisis en informatique théorique	3
IFT	781	Théorie des automates et des langages	
		formels	3
IFT	783	Implantation des langages de programmation	3 3 3 3 3
IFT	785	Approches orientées objets	3
IFT		Vision par ordinateur	3
IFT	787	lmagerie	3
STT	711	Statistique appliquée	3
Aprè	s l'ap	probation de la directrice ou du directeur de reche	rche,

Après l'approbation de la directrice ou du directeur de recherche, l'étudiante ou l'étudiant peut choisir des activités pédagogiques offertes dans un autre programme de deuxième ou de troisième cycle du Département de mathématiques et d'informatique ou, pour au plus trois crédits, des activités de dernière année du baccalau-réat en informatique qui n'ont pas déjà été créditées à l'étudiante ou à l'étudiant.

Maîtrise en mathématiques

(819) 821-8000, poste 1056 (téléphone) (819) 821-8200 (télécopieur) etudes-sup@dml.usherb.ca (adresse électronique) RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Maître ès sciences, M.Sc.

ORJECTIES

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances en mathématiques;
- d'amorcer une spécialisation dans un secteur de cette science; de s'initier à la recherche et, le cas échéant, d'appliquer les ma-
- thématiques aux sciences physiques, aux sciences humaines ou aux sciences de la gestion,
- d'acquérir une méthode de recherche, grâce à l'élaboration et à la réalisation d'un projet de recherche sous la supervision d'une directrice ou d'un directeur de recherche;
- de développer la rigueur et le sens critique par l'analyse et la rédaction de textes scientifiques;
- de développer un esprit de synthèse et une certaine curiosité intellectuelle qui l'aideront à s'adapter continuellement dans un domaine en évolution rapide;
- de développer sa capacité d'écoute, de même que son expression orale et écrite, de façon à lui assurer une communication efficace avec les personnes qui feront appel à ses services.

ADMISSION

Condition générale

Grade de 1ª cycle en mathématiques, en statistique, en recherche opérationnelle, en informatique, en informatique de gestion, en génie informatique ou un diplôme jugé équivalent.

Condition particulière

Avoir une moyenne cumulative d'au moins 2,7 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. La Faculté peut néanmoins admettre une candidate ou un candidat ne satisfaisant pas à cette condition particulière d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINES DE RECHERCHE

Alcèbre Analyse Combinatoire Méthodes numériques Probabilités Recherche opérationnelle Statistique Topologie

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (30 crédits)

·		CR
MAT 793	Activités de recherche I	4
MAT 794	Activités de recherche II	4
MAT 795	Séminaire de maîtrise	3
MAT 796	Présentation de mémoire	7
MAT 797	Mémoire	12

Activités pédagogiques à option (15 crédits)

Au moins deux activités parmi les quatre suivantes:

IAT 721	Algèbre non commutative	
	Analyse fonctionnelle I	
IAI /43	Analyse forfctionnelle i	

ROP	771	Programmation mathématique	
		Prohabilités	

Les autres crédits peuvent être obtenus par des activités choisies dans la liste ci-dessous.

			CR
MAT	711	Théorie des catégories	3
MAT	712	Mesure et intégration	3
MAT	714	Méthodes numériques	3
MAT	715	Approximation et interpolation	3
MAT	723	Topologie générale	3
MAT	728	Sujets choisis en algèbre	3
MAT	729	Algèbre commutative et géométrie algébrique	3
MAT	731	Groupes et représentations des groupes	3
MAT	736	Algèbre homologique	3
MAT	741	Géométrie combinatoire	3
MAT	748	Sujets choisis en analyse	3
MAT	749	Équations aux dérivées partielles	3
MAT	761	Théorie des codes	3
MAT	813	Topologie algébrique	3
MAT	821	Représentations des algèbres	3
MAT	845	Analyse fonctionnelle II	3
MAT	847	Variétés différentiables et groupes de Lie	3
ROP	731	Recherche opérationnelle	3
ROP		Programmation linéaire en nombres entiers	3
ROP		Théorie du choix sous critères multiples	3
ROP		Sujets choisis en recherche opérationnelle	3
ROP		Sujets choisis en programmation linéaire	3
ROP		Sujets choisis en programmation non linéaire	3
ROP		Sujets avancés en programmation linéaire	3
ROP		Algorithmes en programmation non linéaire	3
STT		Modèles de probabilités appliquées	3
	707	Analyse des données	3
	708	Sujets choisis en probabilités	3
	711	Statistique appliquée	3
	712	Statistique non paramétrique	3
	718	Sujets choisis en statistique	3
	721	Tests d'hypothèses	33 33 33 33 33 33 33 33 33 33 33 33 33
	722	Théorie de la décision	3
STT	723	Séries chronologiques	3
STT	751	Statistique mathématique	3

Avec l'approbation de la directrice ou du directeur, l'étudiante ou l'étudiant peut choisir des activités pédagogiques offertes dans un autre programme de deuxième ou de troisième cycle du Département de mathématiques et d'informatique.

Maîtrise en physique

(819) 821-7055 (téléphone) (819) 821-8046 (télécopieur) cms@physique.usherb.ca (adresse électronique)

RESPONSABILITÉ: Département de physique, Faculté des sciences

GRADE: Maître ès sciences, M.Sc.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances générales en physique; d'amorcer une spécialisation dans un secteur de la physique;
- de s'initier à la recherche.

ADMISSION

Condition générale

CR

Grade de 1º cycle en physique ou l'équivalent.

Condition particulière

Avoir une moyenne cumulative d'au moins 2,7 dans un système où la note maximale est 4,3 ou avoir obtenu des résultats scolaires jugés équivalents. La Faculté peut néanmoins admettre un candidat ne satisfaisant pas à cette condition particulière d'admission. Dans un tel cas, la Faculté peut, conformément au Règlement des études, imposer à l'étudiante ou à l'étudiant des activités pédagogiques complémentaires.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 45

DOMAINES DE RECHERCHE

Physique théorique et expérimentale de la matière condensée : matériaux exotiques (supraconducteurs et systèmes magnétiques anisotropes). Physique des semiconducteurs III-V.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (34 crédits)

				ŲΠ
PHY	711	Séminaire		2
PHY	780	Activités de recherche		21
PHY	790	Mémoire	•	11

Activités pédagogiques à option (11 crédits minimum)

Choisies dans l'une des deux voies suivantes :

Le bloc d'activités suivant (8 crédits) :

Le bloc d'e	activités suivant (12 crédits) :	CR
PHY 731	Mécanique quantique I	4
		-
PHY 741	Physique statistique	4
PHY 783	Physique de l'état solide	4

VOIE APPLIQUÉE

VOIE FONDAMENTALE

			CH
PHY	753	Physique des microstructures	4
PHY	783	Physique de l'état solide	4
Une	activite	parmi les suivantes :	
			CR
GEI	710	Conception avancée de circuits intégrés	3
GĘI	711	Fabrication et caractérisation de dispositifs semiconducteurs	3
GEI	712	Neurophysiologie applicable aux prothèses sensorielles	3
GEI	713	Matériaux semiconducteurs et couches	_
		minces	3
GEI	714	Dispositifs électroniques sur silicium et matériaux III-V	3
GEI	715	Conception VLSI en fonction des tests et	
		circuits CMOS analogiques	3

Doctorat en biologie

(819) 821-7071 (téléphone) (819) 821-8049 (télécopieur)

biologie@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de biologie, Faculté des sciences

GRADE: Philosophiae doctor, Ph.D.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances dans un champ de spécialisation de la biologie;
- d'acquérir une formation de chercheuse ou de chercheur;
- de devenir apte à assumer, d'une façon autonome, la responsabilité d'activités de recherche;
- de développer de nouvelles connaissances scientifiques;
- de développer sa capacité de bien communiquer les résultats de ses travaux.

ADMISSION

Condition générale

Grade de 2º cycle en biologie, en biochimie ou l'équivalent

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 90

DOMAINES DE RECHERCHE

Botanique et physiologie végétale, microbiologie et virologie, écologie végétale et animale, biologie cellulaire et moléculaire.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (86 crédits)

		CH
897	Examen général	8
898	Activités de recherche	48
899	Thèse	28
706	Séminaire de recherche IV	. 1
708	Séminaire de recherche V	1
	899 706	898 Activités de recherche 899 Thèse 706 Séminaire de recherche IV

Activités pédagogiques à option (0 à 4 crédits)

Choisies parmi les activités pédagogiques suivantes :

		CR
BCL 720	Sujets spéciaux (biologie cellulaire)	1
BCM 702	Les acides nucléiques	2
BCM 714	Biochimie des protéines	3
ECL 706	Écologie des oiseaux	2
ECL 708	Écologie végétale avancée	2
ECL 710	Écologie et comportement	2
ECL 716	Mammalogie avancée	2
ECL 720	Sujets spéciaux (écologie)	1
ECL 726	Éco-physiologie avancée	2
ECL 727	Analyses des données écologiques	1
ECL 750	Analyses avancées des données écologiques	2
MCB 710	Biologie des actinomycètes	1
MCB 720	Sujets spéciaux (microbiologie)	1
PBI 721	Sujets spéciaux (biotechnologie)	1
PBI 824	Interactions scientifiques II	2
PSL 705	Biologie de la lactation	3
PSV 700	Physiologie végétale II	3 2 2 2
PSV 702	Physiologie végétale III	2
PTV 702	Interactions plantes-microorganismes	
TSB 701	La culture de cellules et de tissus	2

Activités pédagogiques au choix (0 à 4 crédits)

Doctorat en chimie

(819) 821-7088 (téléphone)

(819) 821-8017 (télécopieur)

alasia@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de chimie, Faculté des sciences

GRADE: Philosophiae doctor, Ph.D.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances dans un champ de spécialisation de la chimie:
- d'acquérir une formation de chercheuse ou de chercheur;
- de devenir apte à assumer, d'une façon autonome, la responsabilité d'activités de recherche;
- de développer de nouvelles connaissances scientifiques;
- de développer sa capacité de bien communiquer les résultats de ses travaux.

ADMISSION

Condition générale

Grade de 2º cycle en chimie ou l'équivalent.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 90

DOMAINES DE RECHERCHE

Chimie analytique et appliquée; chimie bioorganique, biophysique et bioanalytique; chimie des polymères; chimie des solutions et des interfaces; chimie organique; chimie théorique; chimie structurale et spectroscopie moléculaire; électrochimie.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (90 crédits)

		Uπ
Séminaire II		2
Séminaire III		3
Activités de recherche		49
Examen général		6
Thèse		30
	Séminaire III Activités de recherche Examen général	Séminaire III Activités de recherche Examen général

Dans le cadre de son programme, une étudiante ou un étudiant peut se voir imposer l'une ou plusieurs des activités pédagogiques du programme de maîtrise en chimie.

Doctorat en mathématiques

(819) 821-8000, poste 1056 (téléphone) (819) 821-8200 (télécopieur)

etudes-sup@dmi.usherb.ca (adresse électronique)

RESPONSABILITÉ : Département de mathématiques et d'informatique, Faculté des sciences

GRADE: Philosophiae doctor, Ph.D.

Le doctorat en mathématiques permet un cheminement en mathématiques ou en informatique.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances dans un champ de spécialisation:
- d'acquérir une formation de chercheure ou de chercheur;
- de devenir apte à assumer, d'une façon autonome, la responsabilité d'activités de recherche;
- de développer de nouvelles connaissances scientifiques;
- de développer sa capacité à bien communiquer les résultats de ses travaux.

ADMISSION

Condition générale

Grade de 2º cycle en mathématiques, en informatique, en génie logiciel ou l'équivalent

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 90

DOMAINES DE RECHERCHE

Pour le cheminement en mathématiques

- algèbre
- analyse
- méthodes numériques
- probabilités
- recherche opérationnelle
- statistique

Pour le cheminement en informatique

- fiabilité des systèmes
- genie logiciel
- infographie
 informatique théorique
- intelligence artificielle
- réseaux neuronaux
- télématique
- vision par ordinateur

PROFIL DES ÉTUDES

Pour le cheminement en mathématiques

Activités pédagogiques obligatoires (78 crédits)

MAT 895	Activités de recherche et séminaire	41
MAT 897	Examen général	12
MAT 899	Thèse	25

Activités pédagogiques à option (12 crédits)

Choisies parmi les activités pédagogiques d'un des programmes de maîtrise du Département de mathématiques et d'informatique et les activités suivantes :

01 105 00111	Mos darramos .	CR
MAT 801	Séminaire de recherche I	3
MAT 802	Séminaire de recherche II	3
MAT 803	Séminaire de recherche III	3
MAT 804	Séminaire de recherche IV	3

Une étudiante ou un étudiant au doctorat ne peut s'inscrire à un de ces séminaires qu'avec l'approbation du Comité des études supérieures du département et celle de sa directrice ou de son directeur de recherche.

IFT 802

(FT 803

804

Pour le cheminement en informatique PHY 811 Sáminaire 2 7 Séminaire PHY 812 Activités pédagogiques obligatoires (78 crédits) PHY 896 Examen général PHY 898 Activités de recherche 48 Activités de recherche et séminaire 25 PHY 899 897 12 IFT Examen général 899 Thèse Activités pédagogiques à option (6 crédits) Choisies parmi les activités suivantes : Activités pédagogiques à option (12 crédits) CR Choisies parmi les activités pédagogiques d'un des programmes PHY 887 Propriétés optiques et de transport des de maîtrise du Département de mathématiques et d'informatique 3 solides et les activités suivantes : **PHY 888** Transitions de phase et systèmes CR 3 quantiques aux basses températures 3 RN1 Séminaire de recherche I PHY 889 Sujets de pointe

3

3

891 PHY

PHY 892

Une étudiante ou un étudiant au doctorat ne peut s'inscrire à un de ces séminaires qu'avec l'approbation du Comité des études supérieures du département et celle de sa directrice ou de son directeur de recherche.

Séminaire de recherche II

Séminaire de recherche III

Séminaire de recherche IV

Doctorat en physique

(819) 821-7055 (téléphone) (819) 821-8046 (télécopieur)

cms@physique.usherb.ca (adresse électronique)

RESPONSABILITÉ: Département de physique, Faculté des sciences

GRADE: Philosophiae doctor, Ph.D.

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'approfondir ses connaissances dans un champ de spécialisation en physique;
- d'acquérir une formation de chercheuse ou de chercheur;
- de devenir apte à assumer, d'une façon autonome, la responsabilité d'activités de recherche:
- de développer de nouvelles connaissances scientifiques;
- de développer sa capacité de bien communiquer les résultats de ses travaux.

ADMISSION

Condition générale

Grade de 2º cycle en physique ou l'équivalent.

RÉGIME DES ÉTUDES

Régime régulier à temps complet

CRÉDITS EXIGÉS: 90

DOMAINES DE RECHERCHE

Physique théorique et expérimentale de la matière condensée : matériaux exotiques (supraconducteurs et systèmes magnétiques anisotropes). Physique des semiconducteurs III-V.

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (84 crédits)

Diplôme	de	2 °	cycle	de	gestion	de
L'anviron	nai	ne	un f			

Théorie des groupes

Problème à « N » corps

Pour information:

À Sherbrooke (819) 821-8000, poste 2004 (téléphone) 1-800-267-8337 (téléphone sans frais) (819) 821-8017 (télécopieur) marcel.mongrain@courrier.usherb.ca (adressé électronique)

À Longueuil (450) 670-3570 (téléphone) (450) 670-9016 (télécopieur)

diplome.environnement@courrier.usherb.ca (adresse électronique)

À Jongulère (418) 542-0307, poste 275 (téléphone) (418) 542-6818 (télécopieur) gilbert.grenon@cjonquiere.qc.ca (adresse électronique)

À Québec (418) 832-6001 (téléphone) (418) 832-2928 (télécopieur) clqgeuds@qc.aira.com (adresse électronique)

RESPONSABILITÉ : Faculté des sciences

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir une formation de généraliste de la gestion de l'environnement qui, s'ajoutant à une formation disciplinaire et à une expérience acquises, met l'accent sur la prévention des problèmes environnementaux, sur les stratégies de résolution de tels problèmes et sur l'éducation permanente; de comprendre et d'utiliser à l'occasion le langage de base des
- spécialistes de la chimie, de la biologie, du droit, de la santé publique et de l'économie, lorsque le discours porte sur une question relative à l'environnement;
- de maintenir une connaissance à jour et de savoir tirer parti, en tant que gestionnaire, des technologies spécifiques au domaine de l'environnement;
- d'écouter, de comprendre et d'intégrer, au cours d'une discussion portant sur une question environnementale, le point de vue des autres spécialistes;
- d'effectuer, en tant que gestionnaire, la synthèse des multiples dimensions d'une problématique environnementale donnée;
- d'exprimer, au cours d'une discussion portant sur une question environnementale, le point de vue de sa propre spécialité, dans des termes qui soient accessibles à d'autres types de spécialis-

- de poser un jugement précis face à une situation susceptible de conduire à une détérioration de l'environnement ou de la santé publique et de proposer des solutions;
- d'identifier les moyens à prendre et le type de spécialistes requis pour résoudre un problème environnemental existant ou une situation de crise environnementale:
- de former une équipe multidisciplinaire en vue de mener une étude d'impacts ou plus généralement en vue de résoudre un problème environnemental donné, de coordonner ses travaux et de les évaluer;
- de gérer la mise en oeuvre d'une stratégie de solution donnée face à un problème environnemental prévisible ou existant;
- de participer, en tant que gestionnaire, à la conception d'un plan d'urgence et d'en gérer l'application;
- de médiatiser adéquatement des décisions à caractère public;
- de justifier, au plan économique, un projet environnemental donné

ADMISSION

Condition générale

Grade de 1° cycle dans une discipline ou un champ d'études pertinent. Les candidates et les candidats qui ne répondent pas à cette condition peuvent être admis sur la base d'une formation ou d'une expérience jugée satisfaisante.

Condition particulière

Posséder une expérience professionnelle en environnement

RÉGIME DES ÉTUDES

Régime régulier à temps partiel

CRÉDITS EXIGÉS: 30

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (18 crédits)

ENV ENV ENV ENV ENV	701 716 762 769	Éléments de gestion de l'environnement Technologies de l'environnement Gestion des matières résiduelles Droit de l'environnement Problématiques de santé environnementale Chimie de l'environnement	
ENV	775	Chimie de l'environnement	

Activités pédagogiques à option (12 crédits)

Choisies parmi les suivantes:

			CR
ENV	706	Médiation et processus de décision	3
ENV	708	Principes de l'écodécision	3
ENV	712	Systèmes de gestion environnementale	3
ENV	715	Évaluation des risques et études d'impacts	3
ENV	717	Communication en environnement	3
ENV	764	Écotoxicologie	3

Microprogramme de 2° cycle de vérification environnementale

Note : ce programme peut être offert à Longueuil, à Sherbrooke et ailleurs au Québec.

(819) 821-8000, poste 3636 (téléphone) (819) 821-6969 (télécopieur)

ivien@courrier.usherb.ca (adresse électronique)

RESPONSABILITÉ : Faculté de génie, Faculté des lettres et sciences humaines, Faculté de médecine, Faculté des sciences

OBJECTIFS

Permettre à l'étudiante ou à l'étudiant :

- d'acquérir une formation spécifique de pointe dans une sphère de l'environnement en pleine expansion;
 - de perfectionner ses acquis.

ADMISSION

Condition générale

Condition générale d'admission aux programmes de 2° cycle de l'Université (cf. Règlement des études)

Conditions particulières

Être titulaire d'un diplôme de 2° cycle pertinent au domaine de l'environnement ou un baccalauréat jugé utile dans le domaine de l'environnement avec une expérience jugée pertinente. L'étudiante ou l'étudiant ne possédant pas ces conditions pourra être admis sur la base d'une formation ou d'une expérience jugée satisfaisante.

RÉGIME DES ÉTUDES

Régime régulier à temps partiel

CRÉDITS EXIGÉS: 12

PROFIL DES ÉTUDES

Activités pédagogiques obligatoires (12 crédits)

			CR
ENV	712	Systèmes de gestion environnementale	3
ENV	742	Vérification environnementale	3
ENV	743	Évaluation environnementale de site	3
ENV	762	Droit de l'environnement	3

Description des activités pédagogiques

Chaque activité offerte par la Faculté des sciences est caractérisée par trois nombres dont le premier correspond aux heures-contact, le deuxième aux travaux pratiques, laboratoires ou exercices, le troisième au travail personnel en moyenne.

ADM

ADM 111

3 cr.

Principes d'administration

Objectifs: connaître les principes et processus qui régissent l'entreprise, plus spécifiquement dans l'environnement canadien; apprendre à résoudre des problèmes simples reliés au processus de gestion; développer un vocabulaire et un système de références permettant d'intégrer plus facilement les autres notions de gestion.

Contenu: l'évolution des théories de management, les fonctions du gestionnaire, la culture de l'entreprise, le processus de gestion, la prise de décision, les éléments associés à la progression d'une entreprise.

ALM

ALM 300 Nutrition (2-0-4)

2 cr.

Objectifs: connaître, interpréter et discuter les principes fondamentaux de nutrition chez l'être vivant: plus spécifiquement, pouvoir apprécier les besoins généraux des organismes, savoir par quels moyens satisfaire ces besoins et être capable de prévoir les effets d'une alimentation insuffisante, déficiente ou axxessive.

Contenu: exigences nutritionnelles et bienfaits de la nutrition. Valeur biologique des aliments: hydrates de carbone, lipides et protéines. Équilibre énergétique: calorimétrie, métabolisme et dépense quotidienne. Besoins particuliers: éléments minéraux, vitamines et eau. Standards nutritionnels. Applications de la nutrition: comportement et habitudes alimentaires.

BCL

BCL 102

3 07

Biologie cellulaire I (3-0-6)

Objectif : connaître la structure et les fonctions de la cellule.

Contenu: brève description des cellules procaryotes, eucaryotes et des virus; la membrane plasmique et la paroi cellulaire; le réticulum endoplasmique et l'appareil de Golgi; les lysosomes et endosomes; les péroxysomes et glyoxysomes; le cytoplasme et le cytosquelette; les mitochondries et chloroplastes; le noyau, la biochimie des purines et pyrimidines et la structure de la chromatine; transcription de l'information génétique; cycle de division cellulaire et réplication de IADN, mitose et méiose.

RCI FOA

2 cr.

Différenciation cellulaire I (2-0-4)

Objectif: acquérir et maîtriser les notions fondamentales concernant la différenciation cellulaire et sa régulation.

Contenu : la communication cellulaire. Le cycle cellulaire. Mécanisme régulateur et signaux chimiques récepteurs, hormones. Dictyostelium discoideum. Fertilisation et divisions précoces. Organisation spatiale et migration cellulaire. Relation mésenchyme et épithélium. Cellulas pluripotentes : hématopoïèse et régulation, intestin et régulation. Gamétogénèse. Régénération. Néphrogénèse. Dérèglement des mécanismes de contrôle

Préalable : BCL 102

RCI 506

3 cr.

Biologie cellulaire II (3-0-6)

Objectif: connaître, de façon approfondie, la structure et les fonctions de la cellule. Contenu: réparation, recombinaison et répication de l'ADN. Organisation structurale et évolution de l'ADN. Relations entre la structure et l'expression de l'ADN. Transcription et modifications post-transcriptionnelles. Traduction. Translocation et routage de protéines membranaires et de sécrétion; importation de protéines mitochondriales, peroxisomales et nucléaires.

Préalables : BCL 102 et BCM 318 Concomitante : GNT 302

BCL 600

2 cr.

Introduction à l'immunologie (2-0-4)

Objectif : avoir un aperçu des théories actueles de l'immunité avec insistance sur les aspects biologiques de la réponse immunitaire. Contenu : introduction. Les bases anatomiques de la réponse immunitaire. Les bases cellulaires de la réponse immunitaire. L'activation des lymphocytes. Le thymus dans l'immunité. Antigènes, anticorps, l'hétérogénéité des immunoglobulines. L'immunité humorale. L'immunité cellulaire. Les réactions d'hypersensibilité. L'immun-régulation. L'auto-immunité, la tolérance immunitaire. Le complexe majeur d'histocompatibilité. Contrôle aénétique de la réponse immunitaire.

BCL 720

1 cr

Sujets spéciaux (biologie cellulaire) (1-0-2).

Objectif: permettre à l'étudiante ou à l'étudiant d'acquérir une connaissance approfondie d'un domaine de la biologie cellulaire revêtant un caractère particulier d'actualité. Contenu: sécrétion cellulaire, assemblage des organites et membranes cellulaires, modifications post-traductionnelles des proté-

nes, endocytose, ultrastructure, mécanismes

intercellulaires de la réponse hormonale.

BCM

BCM 104

1 cr.

Biochimie métabolique (1-0-2)

Objectif: connaître et comprendre les voies métaboliques impliquées dans l'entreposage et la mise en disponibilité de l'énergie nécessaire au maintien de l'organisme vivant.

Contenu : récepteurs et mécanisme d'action hormonale, respiration cellulaire et phosphorylation oxydative, glycogénose, glycogénolyse, glycolyse, cycle de Krebs, gluconéogénèse, cycle des pentoses, lipolyse, lipogénèse.

Préalable : BCM 112

BCM 111

2 cr.

Blochimie générale i - Travaux pratiques (0-3-3)

Objectifs: connaître les propriétés chimiques et physiques des constituants de la matière vivante et les méthodes de dosage; être capable d'utiliser les outils de base de la biochimie, de les manipuler correctement avec exactitude et précision et de présenter des données sous forme de tableaux, de figures ou de graphiques.

Contenu: balance, verrerie, mesures et pipettes automatiques; pH, tampons, notions de mesure: molaride; titration d'acides aminés; dosage et propriétés des protéines; diatyse; spectrophotométrie; enzymes, préparation d'un milieu d'incubation, Km, V max, température, pH optimum; propriétés des lipides, extraction et dosage; sucres : propriétés biochimiques permettant l'identification, TLC; ARN: extraction de l'ARN total et dosage; extraction et dosage de l'ADN.

Préalable : BCM 112

BCM 112

Biochimie générale ! (2-0-4)

Objectifs : connaître les structures et les propriétés des molécules biologiques et comprendre les aspects fonctionnels de ces molécules et les liens entre leur structure et leurs fonctions

Contenu: rappel des notions de chimie des solutions; introduction aux fonctions chimiques et à la composition des molécules biologiques; les glucides : structure et réactions chimiques; les polysaccharides; les lipides : structure et roles biologiques; introduction aux purines, pyrimidines et à la structure de l'ADN; les acides aminés : structure et classification; les protéines : structures primaire, secondaire, tertiaire et quaternaire, et les conformations hélice et feuillet, détermination de la séquence des protéines; purification et analyse des protéines; introduction aux enzymes

BCM 300

3 ...

Biochimie (3-1-5)

Objectif : connaître et comprendre les notions de base de la biochimie au niveau moléculaire et, plus spécifiquement, la structure et les propriétés des biomolécules, leurs rôles biologiques ainsi que les phénomènes de ré-

gulation, de transcription et de reconnaissance moléculaire biologiques.

Contenu : les cellules et leur constitution. Structure et fonctions des biomolécules; protéines, enzymes, ADN, ARN, glucides, lipides. Récepteurs protéiques et régulation. Transcription génétique. ADN recombinant. Transport membranaire. Anticorps et reconnaissance moléculaire spécifique. Communication cellulaire

Préalable : COR 300

BCM 311

Biochimie générale II - Travaux pratiques (0-8-3)

Objectif : acquérir une connaissance des techniques et de l'équipement employés dans des laboratoires de recherche en biochimie.

Contenu: purification et caractérisation des anzymes, études cinétiques des enzymes allostériques, préparation d'un protocole de laboratoire, utilisation des isotopes pour l'étude de la transformation du glucose en lipide par le tissu adipeux, action de l'insuline sur la concentration de glucose sanguin in vivo, analyse des acides nucléiques par des enzymes de restriction et leur séparation par électrophorèse sur agarose, isolement de mitochondries et détermination du rapport P/O.

Antérieure : BCM 318

BCM 313

6 cr.

3 cr.

Blochimie générale II - Travaux pratiques (0-10-5)

Objectifs: préparer un protocole expérimental; réaliser ce protocole en utilisant les techniques les plus importantes de la biologie expérimentale moderne; être capable d'observer et d'interpréter des résultats bruts; être apte à juger de la valeur des résultats et prendre conscience de toutes les possibilités et limites des méthodes expérimentales utilisées.

Contenu: préparation de 5 protocoles de laboratoire et réalisation des expériences touchant différents domaines principaux de la recherche en biochimie: l'ADN, l'ARN, les protéines et les lipides.

Préalables: BCM 111, BCM 318 et TSB 303

BCM 316 3 cr.

Cinétique enzymatique (3-0-6)

Objectifs : comprendre les principes de l'analyse cinétique et les appliquer à l'étude des mécanismes d'action des enzymes.

Contenu: lois de la cinétique. Théorie des collisions et complexes activés. Nomenclature enzymatique. Équation de Michaelis-Menten. Méthodes de calcul des constantes. Enzymes à plusieurs substrats. Inhibition. Modification chimique et dénaturation des enzymes. Allostérie. Effet du pH et de la température. Spécificité et efficacité des enzymes modifiés par bio-ingénierie. Rôle des enzymes dans le contrôle du métabolisme Isoenzymes.

Préalable : BCM 318

BCM 318

4 cr.

Biochimie générale II (4-0-8)

Objectifs: connaître et comprendre les notions concernant le métabolisme intermédiaire, sa régulation, et l'intégration des voies anaboliques et cataboliques.

Contenu : description des essais enzymatiques et de la stratégie pour la punification des

enzymes; vitamines, cofacteurs et oligo-éléments; anabolisme, catabolisme et régulation des voies métaboliques; rappel de la thermodynamique, rôle de l'ATP; la chaîne respiratoire; le transport membranaire; la glycolyse et le métabolisme du glycogène; la voie des pentoses phosphate; la voie C3 et C4 des végétaux; la gluconéogénèse; le cycle de Krebs; ATC: contrôle et structure; les acides gras : synthèse, dégradation et importance dans le métabolisme et dans les membranes, les acides aminés : régulation de la synthèse et de la dégradation; cycle de l'urée; purines et pyrimidines, biosynthèse et régulation; intégration du métabolisme : diabète, exercice, homéostasie métabolique.

Préalable : BCM 112

BCM 400

400 3 cr.

Chimie pharmaceutique (3-1-5)

Objectifs: appliquer les connaissances de chimie organique à certaines catégories de molécules importantes pour leurs effets biologiques et faire le lien entre les théories et la pratique portant sur l'action des médicaments.

Contenu: compréhension du mécanisme d'action des médicaments et de la relation entre la structure chimique du produit et son activité biologique. Biodisponibilité et biotransformation: solubilité des médicaments, absorption et mouvement à travers les membranes biologiques. Cheminement d'un produit depuis la découverte de son activité jusqu'à sa mise en marché. Aperçu de quelques grandes familles: antibiotiques, antiseptiques, antihypertenseurs.

Préalables : BCM 300 et COR 301

BCM 404 3 cr.

Métabolisme avancé (3-0-6)

Objectif : approfondir les connaissances du métabolisme par l'étude critique des découvertes les plus significatives.

Contenu: régulation du métabolisme des glucides et des lipides, biochimie de la détoxication, mécanismes moléculaires de la signalisation transmembranaire, phénomène de trafic intracellulaire des protéines de membranes, structures nouvelles d'ancrage des protéines dans le feuillet bilipidique, aspect moléculaire de la photosynthèse et de la biosynthèse des produits du métabolisme secondaire chez les plantes.

Préalable : BCM 318

BCM 500

Blochimle physique (3-0-6)

Objectif: comprendre les mécanismes fondamentaux d'interaction de la radiation électromagnétique avec des molécules d'intérêt biologique et les applications permettant d'étudier leur structure et conformation.

Contenu: spectroscopie UV-visible, infrarouge et Raman, interférométrie infrarouge, résonance Raman, fluorescence, dispersion optique rotatoire, dichroîsme circulaire, résonance magnétique nucléaire, diffusion de la lumière et des rayons X, diffraction des rayons X.

Préalables : BCM 318 et CPH 311 Concomitante : BCM 501

BCM 501

3 cr

Techniques biochimiques (0-7-2)

Objectif : se familiariser avec les méthodes et les techniques utilisées en biochimie moléculaire et en biochimie.

Contenu: purification d'acide désoxyribonucléique (ADN) plasmidique. Détermination de la séquence nucléotidique d'un ADN complémentaire (ADNc). Synthèse de l'ADNc à partir de l'ARNm. Surexpression d'un gène recombinant. Étiquetage d'une sonde d'ADN avec nucléotide marqué su 2P. Radioactivité. Détermination des points de balance des isotopes et analyse de l'effet du « quenching ». Dosage radioimmunologique. Réaction antigene-anticorps. Chromatographies d'exclusion, échangeuse d'ions et « HPLC ». Électrophorèse des protéines sur gel de polyacrylamide, sur gel d'agarose et par focalisation isoélectrique. Purification d'une enzyme par ultracentrifugation.

Préalable : BCM 311 Concomitante : BCM 500

BCM 503

3 cr.

Laboratoire de blochimie avancée (0-7-2)

Objectif : s'initier à la démarche scientifique en réalisant un projet de recherche.

Contenu : les sujets de recherche sélectionnés font partie des projets de recherche subventionnés d'une professeure ou d'un professeur chercheur biochimiste. Le projet comprend une recherche bibliographique, une mise au point d'un protocole expérimental, l'exécution d'expériences et la rédaction d'un rapport sur le modèle d'un article scientifique.

Préalables : BCM 500 et BIM 500

BCM 508

3 cr.

Biotechnologie : blochimie et génie génétique (3-0-6)

Objectif : se familiariser avec les concepts et le progrès en biotechnologie.

Contenu : revue des techniques en génie génétique et ADN recombinant : applications de l'ADN recombinant en santé, biomasse, agro-alimentaire. Sujets en biochimie appliquée : enzymes immobilisés, cellules immobilisées, biodétecteurs. Applications du métabolisme aérobie. Sujets en métabolisme anaérobie et fermentation; valorisation du méthane, production d'éthand. Bioréacteurs et bioréacteurs à membrane. Anticorps monoclonaux et leurs applications. Sujets présentés par des représentants de l'industrie biotechnologique.

Préalables : BCM 316, BIM 500 et GNT 300

BCM 507

3 cr

2 cr.

Sujets choisis en génétique moléculaire (2-0-4)

Objectifs: connaître et comprendre les concepts théoriques des techniques utilisées en biologie moléculaire et être capable de les appliquer à des exemples concrets de viroloqie, de génétique et d'immunologie.

gie, de génétique et d'immunologie.
Contenu : ce cours montre comment les techniques de clonage moléculaire et de génie génétique ont fait progresser des disciplines comme la virologie, la génétique et l'immunologie au cours des dernières années. L'accent est mis sur la découverte des oncogènes, les mécanismes de réplication des virus et le mécanisme de la diversification des gènes d'immunoglobulines et des récepteurs des cellules T.

Préalables : BCM 500 et GNT 304

BCM 508

3 er

Biotechnologie (3-0-6)

Objectif: se familiariser avec les concepts et les progrès en biotechnologie.

Contenu : revue des techniques en génie génétique et ADN recombinant : applications de l'ADN recombinant en santé, biomasse, agro-alimentaire. Sujets en biochimie appliquée : enzymes immobilisées, cellules immobilisées, biodétecteurs. Applications du métabolisme aérobie. Sujets en métabolisme anaérobie et fermentation; valorisation du méthane, production d'éthanol. Bioréacteurs et bioréacteurs à membrane. Anticorps monoclonaux et leurs applications. Sujets présentés par des représentants de l'industrie biotechnologique.

Préalables : BCM 316, BIM 500 et GNT 300 ou GNT 304

BCM 514

3 cr.

Biochimle des protéines (3-0-6)

Objectifs: connaître, comprendre et appliquer à la biotechnologie les principaux concepts et les principales méthodes ayant cours dans le domaine de l'étude biochimique des protéines et des enzymes; connaître la place, la signification et l'utilité de ces concepts et méthodes dans une stratégie globale d'étude des protéines.

Contenu : la purification des protéines (des méthodes aux stratégies); la structure des protéines (la conformation, ses bases chimiques et sa modélisation); la cinétique enzymatique (équations et modèles mathématiques); la régulation des activités protéiques (réponses aux contraintes physiologiques); les applications (utilisation biotechnologique des protéines et des enzymes). Intégration des suiets précédents dans l'étude d'un système complexe : la synthèse enzymatique des ARNs cellulaires et de son jumelage avec la réparation de l'ADN et le cycle de division cellulaire. Démonstration de logiciels de modélisation. Exercices portant sur divers aspects du contenu théorique. Travail sur réseau informatique (facultatif).

Préalables : BCL 506 et GNT 506

BCM 600

3 cr.

Biochimie appliquée (3-0-6)

Objectifs: connaître les développements récents dans des domaines choisis de la biochimie, faire le lien entre les connaissances fondamentales en biochimie et leurs applications.

Contenu: réactifs bifonctionnels, chélateurs intracellulaires des ions calciques, nucléotides synthétiques, cytosquelette, glycoproténes, lectines, récepteurs biologiques, protéine kinases C, protéines membranaires, patchclamp, icosanoïdes, évolution biochimique, ribosomes, synthèse paptidique.

Préalable : BCM 501

BCM 602

2 cr.

Biochimie clinique (2-0-4)

Objectif: connaître les différents secteurs d'activité de la biochimie clinique et plus particulièrement ses apports au diagnostic et au suivi médical.

Contenu: définition des processus pathologique et diagnostique. Informations apportées au clinicien par une analyse de laboratoire (valeurs de référence, spécificité, sensibilité). Principes des mécanismes de régulation hormonale et notion de marqueur biologique. Rôle du laboratoire de biochimie clinique dans l'exploration des principales pathophysiologies humaines (désordres hydroélectrolytiques, acido-basiques, lipidiques protéiques et immunologiques). Apports de la biochimie aux problèmes nutritionnels. Rôle du laboratoire dans l'application de la pharmacologie clinique. Dornaines spécifiques à la biochimie clinique (instrumentation, organisation administrative, validation de techniques, contrôle de qualité). Visite d'un laboratoire de biochimie clinique.

Préalable : BCM 318

BCM 603

1 cr.

Analyse structurale informatisée (0-3-0)

Objectif : se familiariser avec l'utilisation des logiciels en biologie moléculaire.

Contenu: intégration de plusieurs notions de biologie moléculaire vues antérieurement. Les étudiants et les étudiants découvriront les différents outils informatiques pour l'étude de l'ADN (analyse d'une séquence, recherche d'homologie, détermination des promoteurs, carte de restrictions, etc.); de l'ARN (détermination de la structure secondaire et tertiaire; des protéines (analyse de la composition en acides aminés, détermination de la structure secondaire et tertiaire, etc.). Le travail sera exécuté sur des appareils IBM-Pc, MacIntosh et lris. Les problèmes seront intégrés autour de structures types analysées sur plusieurs semaines.

Préalable : BIM 500

BCM 606

2 cr.

Endocrinologia motéculaire (2-0-4)

Objectif: aborder les notions modernes d'endocrinologie moléculaire en étudiant quelques systèmes endocriniens.

Contenu: introduction aux grands axes endocriniens, incluant l'anatornie et le physiologie. Mode d'action des hormones peptidiques, stéroïdiennes et thyroïdiennes. Physiologie endocrinienne des surrénales, des gonades, du placente, de la thyroïde et du pancréas. Lactation. Métabolisme du cal-

Préalable : BCM 318

BCM 608

1 cr.

Séminaire de blochimie (1-0-2)

Objectifs: apprendre à exposer des résultats scientifiques; apprendre à résumer un manuscrit scientifique.

Contenu : un article choisi dans les parutions scientifiques récentes.

RCM 821

2 cr.

Initiation à la recherche en blochimie (0-5-1)

Objectifs: conneître et comprendre les notions de base afin de concevoir et de mener à bien un projet de recherche en biochimie, d'interpréter les résultats expérimentaux et de produire un rapport sous forme d'une communication scientifique.

Contenu: choix d'un sujet parmi ceux proposes, selon les disponibilités et en accord avec la professeure ou le professeur esponsable; élaboration d'un plan expérimental basé sur des données de la littérature scientifique; exécution des expériences prévues; préparation et soumission d'un rapport.

Préalable : BCM 311

BCM 702

2 cr

Les acides nucléiques (2-0-4)

Objectif: se familiariser avec les concepts théoriques des manipulations des acides nucléiques en biologie moléculaire et en génie génétique.

Contenu: propriétés des enzymes utilisées pour manipuler IADN et IARN. Purification des acides nucléiques. Transfert et hybridation. Séquençage. Mutagénèse. Synthèse de CDNA. Techniques spécialisées. Notions de vecteurs et théories de clonage.

BCM 714

3 cr.

Biochimie des protéines (3-0-6)

Objectifs : approfondir les principaux concepts et les principales méthodes ayant cours dans le domaine de l'étude biochimique des protéines et des enzymes; connaître la place, la signification et l'utilité de ces concepts et méthodes dans une stratégie globale d'étude des protéines; appliquer certaines notions théoriques discurées en classe à des problèmes scientifiques reliés à la littérature récente et à la manipulation de logiciels informatiques de modélisation.

Contenu : la purification des protéines (des méthodes aux stratégies); la structure des proteines (la conformation, ses bases chimiques et sa modélisation); la cinétique enzymatique (équations et modèles mathématiques); les mécanismes de la catalyse enzymatique (la chimie réactionnelle); la régulation des activités protéigues (réponses aux contraintes physiologiques). Intégration des sujets précédents dans l'étude d'un système complexe : la synthèse enzymatique des ARNs cellulaires et de son jumelage avec la réparation de l'ADN et le cycle de division cellulaire. Exercices sur logiciels de modélisation. Problèmes reliés à la littérature scientifique récente. Travail sur réseau informatique (facultatif).

BIM

BIM 500

3 cr

Biologie moléculaire (3-0-6)

Objectif : se familiariser avec les progrès récents de la biochimie moléculaire.

Contenu : revue du concept de base : structures DNA superhélicité. Réplication : DNA polymérase, modèles de polymérisation de DNA, ligases, topoisomérases. Recombinaison et réparation de DNA: protéines impliquées durant la recombinaison, mécanisme de réarrangements des gènes, transposons. Enzymes de restriction. Transcription : polymérases, contrôle de la transcription, maturation du RNA, « reverse transcriptase ». Traduction : les ribosomes et leur structure, facteurs ribosomaux. Modification post-traductionnelle : signal peptidique, activation des enzymes, modifications secondaires des enzymas, maturation des collagènes, glycoprotéines. Régulation de transport des protéines intracellulaires et extracellulaires : cytosquelette (microfilament, microtubes, actine).

Préalable : BCL 102

BIO

BIO 101

Biométrie (3-0-6)

Objectifs : acquérir les notions de base en statistiques descriptives et inférentielles nécessaires à l'analyse des données biologiques uni- et bidimensionnelles. Pouvoir décider quelle méthode statistique est la plus pertinente pour l'analyse de données biologiques dans différents types d'objectifs de la recherche.

Contenu : analyse descriptive des données. Paramètres d'une distribution. Estimation de paramètres. Lois de la probabilité. Tests d'hypothèses. Tests non-paramétriques. Corrélation. Régression. Comparaison de moyennes. Analyse de variance.

BIO 103

1 cr.

3 cr

Utilisation d'un chiffrier électronique (1-1-1)

Objectif : connaître un logiciel de chiffrier électronique tel EXCEL afin de l'utiliser et de développer, de modifier et d'interpréter des applications au cours des stages de formation en biologie.

Contenu : rappels en statistiques descriptives et inférentielles; éléments d'informatique, étapes de gestion de fichiers, étapes d'analyse de données; saisie et mise à jour de données avec par exemple EXCEL; production de statistiques et de graphiques avec par exemple EXCEL: développement d'un fichier dans le domaine de la biologie avec par exemple EXCEL

Préalables : BIO 101 et GBI 102

BIO 105

Utilisation d'une base de données (1-1-1)

Objectif : connaître un logiciel de base de données électronique tel ACCESS afin de l'utiliser et de développer, de modifier et d'interpréter des applications au cours des stages de formation.

Contenu : concepts de base de données relationnelles. Éléments constitutifs d'une base de données relationnelle développée par exemple en ACCESS: tables, requêtes, formulaires, états. Développement d'une base de données relationnelle par exemple ACCESS dans le domaine de la biologie.

Préalables : BIO 101 et GBI 102

BIO 169

2 cr.

Traitement de données biologiques (1-2-3)

Objectifs: être en mesure d'utiliser efficacement un logiciel spécialisé de programmation (le logiciel SAS en particulier); pouvoir appliquer son utilisation à la gestion de bases de données écologiques et à l'analyse des informations qu'elles contiennent.

Contenu : système d'exploitation et langage de commandes. Édition et gestion élémentaires de fichiers. Utilisation de quelques utilitaires. Utilisation d'un logiciel spécialisé (logiciel SAS) et programmation de base. Applications orientées vers l'écologie. Gestion et analyse de données provenant d'une base de données écologiques. Élaboration d'un protocole de recherche et rédaction de rapports d'utilisation du SAS et d'analyses de données écologiques.

Préalable : BIO 101

BIO 600

3 cr.

16 cr.

48 cr.

Projets d'intégration en biologie (1-0-8) Objectif : intégrer les connaissances acqui-

ses à de nouvelles connaissances.

Contenu : réalisation et présentation d'un travail original sur un sujet de l'heure dans un domaine de la biologie.

Préalable : avoir obtenu 55 crédits du programme

20 cr **BIO 798** Activités de recherche

BIO 799

Mémoire

BIO 897 8 cr

Examen général

BIO 898 Activités de recherche

> **RIO 899** 28 cr.

Thèse

BOT

BOT 102

3 cr. Formes et fonctions végétales (3-0-6)

Objectif : connaître les caractéristiques morphologiques et anatorniques des grands groupes végétaux dans le contexte de l'adaptation au milieu et de l'évolution.

Contenu : appareil reproducteur, modes de reproduction et cycles vitaux; floraison; germination des graines; appareil végétatif : adaptation pour l'acquisition des ressources, thalle, racine, tige, feuille; tissus mérismatiques et différenciés; types cellulaires; dormance des bourgeons; croissance modulaire.

BOT 103 1 cr.

Formes et fonctions végétales - Travaux pratiques (0-3-0)

Objectifs : connaître l'évolution des formes et des fonctions chez les végétaux; observer et manipuler correctement les végétaux.

Contenu : dans un contexte évolutif et adaptatif : étude des formes et des fonctions des Thallophytes, Bryophytes et Ptéridophytes : comparaison de l'anatomie et des fonctions des organes : feuilles, tiges, racines, mégasporophylle, microsporophylle et des graines des gymnospermes et des angiospermes incluant les Ptéridophytes dans le cas des tiges; étude des méristèmes secondaires, cambium et phellogène; comparaison de l'anatomie et des fonctions des tissus différenciés : phloème et xylème primaire et secondaire, tissus de réserve, protecteurs et de soutien des gymnospermes et angiospermes.

Concomitante: BOT 102

ROT 508

Systématique végétale (2-0-4)

Objectif: connaître les bases de la taxonomie végétale ainsi que les différentes méthodes de la biosystématique et les données récentes sur l'évolution des plantes vasculaires.

Contenu : historique de la taxonomie et les différents systèmes taxonomiques; concepts de classification et de la nomenclature; processus évolutifs et notions d'espèce; attributs taxonomiques; la taxonomie phénétique; la taxonomie cladistique; les tendances évolutives des plantes vasculaires.

Préalable : ECL 510

BOT 507

Systématique végétale - Travaux pratiques (0-6-0)

Objectifs : connaître le système Cronquist de classification des plantes vasculaires; être capable de se servir des flores pour l'identification des espèces les plus répandues au Québec méridional et d'utiliser correctement les techniques de récolte, de préparation et de montage des spécimens.

Contenu : récolte sur le terrain, préparation et identification de 100 spécimens d'espèces différentes: identification des arbres en hiver: étude d'espèces représentatives des embranchements et des familles de plantes vasculaires; projet collectif d'une étude phénétique.

Préalable : BOT 102

CAN

CAN 300

3 cr.

Chimie analytique (3-1-5)

Objectifs: maîtriser les concepts fondamentaux d'équilibre chimique, d'acidité et de basicité, de complexométrie, de réactions rédox, de réactions de précipitation; être capable d'effectuer des calculs d'équilibre impliquant ces différents systèmes chimiques; être capable de calculer les courbes de titrage pour des systèmes acido-basiques, complexométriques, d'oxydo-réduction, et de précipitation; être capable de choisir les différents moyens de localisation du point final.

Contenu: introduction. Principes généraux: réactions acides-bases en milieux aqueux et nonaqueux; complexométrie; oxydo-réduction; précipitation. Courbes de titrages. Localisation du point final (point d'équivalence); indicateurs et potentiométrie. Applications analytiques.

CAN 305

2 ...

Méthodes quantitatives de la chimie -Travaux pratiques (0-4-2)

Objectifs: être capable d'obtenir en laboratoire des résultats analytiques d'une grande précision; maîtriser les techniques servant à la préparation des solutions standard, à l'étalonnage de ces solutions et à l'utilisation des méthodes analytiques classiques de volumétrie et de gravimétrie.

Contenu : méthodes gravimétriques et volumétriques de l'analyse chimique. Calibrage d'appareils. Titrages acidobasiques, complexométriques et rédox en présence d'indicateurs et au moyen de la potentiométrie. Déterminations gravimétriques.

CAN 400

3 cr.

Analyse instrumentale (3-1-5)

Objectifs: acquérir les principes théoriques, connaître les applications et les limitations des techniques analytiques instrumentales modernes. Se familiariser evec la construction de l'appareillage utilisé dans ces techniques; être en mesure de choisir la technique la plus appropriée aux divers problèmes analytiques. Contenu: analyse d'erreurs; introduction à l'instrumentation électronique; méthodes spectroanalytiques: spectrophotométrie UV/ VIS, fluorescence, absorption et émission atomique, méthodes optiques diverses; méthodes chromatographiques en phase gazeuse et liquide, chromatographie à haute performance : de partage, à phase liée, d'absorption, d'échange d'ions, d'exclusion; méthodes électrochimiques : potentiométrie, électrodes sensibles aux ions, coulométrie, conductométrie, polarographie, voltampérométrie.

Préalables : CAN 300 et CAN 305

CAN 405

2 cr.

Analyse instrumentale - Travaux pratiques (0-4-2)

Objectif : expérimenter par des travaux pratiques les techniques instrumentales utilisées dans les laboratoires analytiques.

Contenu: expériences sur la polarographie, la conductométrie, les électrodes sélectives aux ions, la chromatographie, l'absorption atomique, la fluorescence, la polarimétrie. L'étudiante ou l'étudiant est appelé à manipuler les instruments courants et à évaluer les données expérimentales selon les traitements statistiques appropriés.

Préalable : CAN 305 Concomitante : CAN 400

CAN 502

2 cr.

Analyse organique (2-1-3)

Objectif: se familiariser avec les méthodes spectroscopiques afin de déterminer la formule, la structure, la conformation et le dynamique de produits organiques. Pour les étudiantes et pour les étudiants de la maîtrise en environnement, le cours vise à leur permettre de comprendre les bases théoriques et les contraintes pratiques sous-jacentes eux méthodes spectroscopiques utilisées pour les analyses courantes en environnement. Contenu : résonnance magnétique nucléaire 1H et 13C, spectroscopie infrarouge, spectroscopie d'absorption électronique, et spectrométrie de masse.

CAN 508

3 cr.

Techniques de séparation (3-1-5)

Objectif : connaître et comprendre les techniques modernes de séparation en milieu gazeux et liquide.
Contenu : chromatographie et méthodes con-

Contenu: chromatographie et méthodes connexes. Aspect dynamique et aspect thermodynamique de la chromatographie et leurs conséquences sur l'analyse. Étude de l'instrumentation limitée aux principaux détecteurs, y compris les détecteurs spécifiques. Les autres modes de séparation (diffusion, distillation, extraction, électrophorèse, membranes, etc.) seront abordés de façon sommaire.

Préalable : CAN 400

CAN 700

3 cr.

Séparations chromatographiques (3-0-6)

Objectif: maîtriser les techniques modernes de séparation en milieu gazeux et liquide. Contenu : dromatographie et méthodes connexes. Aspect dynamique et aspect thermodynamique de la chromatographie et leurs conséquences par rapport à l'analyse. Étude de l'instrumentation limitée aux principaux détecteurs, y compris les détecteurs spécifiques. Autres modes de séparation (diffusion, distillation, extraction, électrophorèse, membranes, etc.) sommairement abordés.

CAN 701

3 cr.

Méthodes électroanalytiques (3-0-6)

Objectif : se familiariser avec les techniques électroanalytiques potentiométriques, coulométriques et électrométriques, avec leurs applications analytiques ainsi qu'avec la détermination du mécanisme des processus sur électrodes.

Contenu : théorie de la potentiométrie, électrodes sélectives aux ions avec une membrane solide et liquide, revue des applications analytiques; titrages coulométriques à courant et à potentiel constant, méthodes de détection du point final, ampérométrie; méthodes électrométriques : chronoampérométrie, polarographie: classique, impulsionnelle normale et différentielle, à tension sinusoïdale surimposée, à onde carrée, voltampérométrie cyclique et avec redissolution anodique, électrode tournante: réactions chimiques antécédentes et subséquentes, diagnostic et détermination de mécanismes et des paramètres cinétiques de ces processus, influence de pH, formation de complexes.

CAN 702

3 cr.

Spectroscopie analytique (3-0-6)

Objectif : se familiariser avec les méthodes de spectroscopie analytique afin d'être en mesure de comprendre les partitions récentes où la spectroscopie analytique est utilisée comme outil de recherche en chimie. Contenu : principes fondamentaux de spectroscopie, méthodes mathématiques de Fourier, diffraction et fluorescence de rayons X. Résonnance magnétique nucléaire, spectros

copie laser, analyses de surfaces, applications

CHM

modernes.

CHM 302

3 cr.

Techniques de chimie organique et inorganique - Travaux pratiques (0-7-2)

Objectif: se familiariser avec tout ce qui concerne l'usage (quand, pourquoi, comment...) des différentes techniques au niveau de la synthèse, l'analyse et la purification des sub-

Contenu: distillation fractionnée, extraction liquide-liquide (Cannizzaro), isolement de produits naturels (Cuminaldéhyde-Cumin), chromatographie (CCM, Plaques, Colonne CPV), caractérisation (RMN, IR), synthèse (Oxydation, Grignerd, Acétanilide).

CHM 307

2 cr.

Travaux pratiques de chimie organique et inorganique (0-5-1)

Objectifs : se familiariser avec les méthodes utilisées dans un laboratoire d'initiation aux techniques fondamentales; être capable d'isoler et de purifier des produits obtenus soit par extraction soit par voie synthétique; être capable de séparer et d'analyser les mélanges : chromatographie et méthodes spectroscopiques.

Contenu : isolement d'un produit naturel. Méthodes de purification de solides et de liquides; caractérisation par l'infrarouge et la résonance magnétique nucléaire; réactions typiques: oxydation, estérification, hydrolyse, protection et déprotection de groupements fonctionnels. Offert aux étudiantes et aux étudiants inscrits au baccalauréat en biologie.

Concomitante: COR 306

CHM 318

2 cr.

Chimie minérale (2-1-3)

Objectifs: connaître, comprendre et appliquer les concepts généraux de chimie minérale, plus précisément la chimie des groupes principaux du tabléau périodique des éléments (les groupes s et p); établir des relations avec des disciplines connexes.

Contenu : hydrogène et gaz rares (le groupe VIII : He, Ne, Ar, Kr, Xe, Rn). Groupe IA (Li, Na, K, Rb, Cs, Fr). Groupe IIA (Be, Mg, Ca, Sr, Ba, Ra). Groupe IIB (B, AJ, Ga, In, TI). Le groupe IVB (C, Si, Ge, Sn, Pb). Le groupe VB (N, P, As, Sb, Bi). Le groupe VIB (O, S, Se, Te, Pb). Le groupe VIB (F, CI, B, I, AU). Oxydation des métaux. Métaux industriels. Métaux précieux. Électrolyse de l'eau. Corrosion.

CHM 319 1 cr.

Sécurité (1-1-1)

Objectif: connaître les dangers des diverses substances à risques et les manipulations sécuritaires en laboratoire permettant d'éviter ces dangers.

Contenu: introduction à la sécurité et prévention, aménagement de locaux, produits corrosifs, inflammables, toxiques, gaz comprimés, liquides cryogéniques, protection de la personne, étiquetage, entreposage, lois sur la SST. Bibliographie sur la sécurité en laboratoire.

CHM 400 2 cr.

Biochimie et chimie organique - Travaux pratiques (0-6-1)

Objectifs: acquérir une certaine autonomie face aux modes expérimentaux; être capable d'appliquer les manipulations fondamentales déjà apprises dans un contexte plus poussé; être capable d'analyser les spectres IR et RMN de façon systématique et coutumière; faire une recherche dans la littérature afin de comprendre et proposer des mécanismes chimiques et biochimiques adéquats. Contenu: séparation et identification des constituants d'un mélange; isolement et synthèse de produits naturels simples; synthèse de composés simples à effet pharmacologique; préparations exigeant plus qu'une étape. Préalable: CHM 302

CHM 402

3 сг

Chimie de l'environnement (3-1-5)

Objectif: connaître, analyser et résoudre les problèmes causés par les polluants chimiques dans l'environnement.

Contenu: origine des éléments et développement de la terre. L'énergie. Les combustibles fossiles. Les nouvelles sources d'énergie. L'atmosphère et la pollution atmosphérique. Les particules aéroportées. Le plomb. Les oxydes de soufre, de carbone, d'azote. Les smogs. L'eau et la pollution. L'épuration des eaux domestiques et industrielles. Les détergents et les phosphates. Les métaux lourds. Les ressources minières et le sol. Les impacts sur l'environnement des processus chimiques. Les substances toxiques et leur contrôle dans l'environnement.

CHM 408

Introduction à la chimie des matériaux (2-1-3)

Objectif: établir un lien entre les concepts de chimie organique, inorganique ou physique et les propriétés de matériaux d'intérêt industriel.

Contenu: introduction à quelques grandes classes de matériaux industriels: métaux et alliages, minéraux industriels, céramiques, zéolites, réfractaires, ciments et bétons, matériaux ligno-cellulosiques, polymères et résines. Pour chaque type de matériaux: les principes chimiques, les propriétés utiles recherchées, les méthodes de fabrication et les techniques d'étude et de caractérisation.

CHM 503

3 cr.

2 cr.

Électrochimie (3-1-5)

Objectifs: acquérir les notions de base de l'électrochimie; approfondir les méthodes d'électroanalyse et connaître les équations thermodynamiques et cinétiques associées aux électrodes.

Contenu : développement de la méthodoloaie électronique. La notion de potentiel est introduite sous son aspect thermodynamique et les cinétiques du transfert de charge et du transfert de masse sont développées pour décrire quantitativement les divers types d'électrodes. Ces concepts de base sont utilisés pour traiter différentes méthodes de l'électrochimie dont la polarographie et la voltampérométrie à balayage. L'étude de l'adsorption et de son influence sur la vitesse des réactions électrochimiques permet de présenter un modèle de structure de la double couche. Des applications importantes telles l'électrosynthèse organique fine et industrielle, la corrosion et les générateurs sont présentées.

Préalables : CAN 400 et CPH 307

CHM 504

3 cr.

Chimie des polymères (3-1-5)

Objectifs: acquérir les notions de base sur les polymères; connaître les méthodes de synthèse, les techniques principales de caractérisation et les propriétés en solution et à l'état solide des polymères.

Contenu: introduction de la structure des polymères; synthèse des polymères; polymères en solution et à l'état solide: thermodynamique, viscoélasticité; introduction des systèmes multiphasés (copolymères, mélanges et alliages de polymères); techniques d'étude pour chaque partie mentionnée; apercu de la mise en forme de polymères.

CHM 508

Transformations chimiques des substances naturelles (3-1-5)

Objectifs: se familiariser avec l'état des connaissances sur les mécanismes d'interconversion des produits organiques naturels par voie enzymatique; établir des stratégies de synthèse organique afin d'imiter une séquence de réactions biosynthétiques.

Contenu: synthèses d'intermédiaires marqués permettant la compréhension des transformations du point de vue mécanistique. Transformations des polysaccharides, flavonoides, acides gras, mono-, sesqui- et di-terpènes, stéroïdes, caroténoïdes, leucotriènes, prostaglandines, polyéthers, polyacétates aromatiques et alcaloïdes.

Préalable : COR 401 ou COR 501

CHM 510

6 cr.

Projet de trimestre (0-16-2)

Objectifs: s'initier à la recherche en chimie; interpréter des résultats expérimentaux selon la méthode scientifique ou mener à bien un plan d'action préalablement établi: produire un rapport sur le modèle d'une communication scientifique; proposer des améliorations aux montages expérimentaux dans certains domaines.

Contenu: dans le but de s'initier aux techniques utilisées dans un laboratoire de recherche et en accord avec la professeure ou le professeure. De professeure ou le professeur, choix d'un projet qui s'étale sur tout le trimestre. Présentation d'un rapport final résumant le travail du trimestre. Les projets peuvent se faire en chimie inorganique, électrochimie, chimie organique, chimie physique, chimie structurale ou chimie théorique. Cette activité n'est pas offerte aux étudiantes et aux étudiants des concentrations de chimie pharmaceutique ou de chimie des matériaux industriels.

CHM 511 6 cr.

Projet de trimestre (0-16-2)

Objectifs: explorer sous forme d'un projet de recherche restreint, un problème particulier en chimie pharmaceutique; faire preuve d'un certain degré d'initiative et d'autonomie; produire un rapport sur le modèle d'une communication scientifique.

Contenu: après avoir choisi un projet de fin d'études (recherche) parmi ceux proposés par le responsable du cours et spécifique à l'orientation de l'étudiante ou de l'étudiant, élaboration d'un plan d'action basé sur des publications originales et suite à des discussions portant sur la pertinence des expériences. Exécution des étapes prévues pour la réalisation du plan et, à la fin, présentation par écrit d'une synthèse des travaux.

CHM 512 6 cr.

Projet de trimestre (0-16-2)

Objectifs : être capable d'interpréter des résultats expérimentaux selon la méthode scientifique; d'extrapoler des résultats expérimentaux dans le but de prédire le comportement de la matière dans des états où la mesure est impossible; d'appliquer des principes élémentaires de statistiques aux données, afin d'obtenir de meilleurs estimés des paramètres expérimentaux et analyser l'erreur expérimentale; de produire un rapport sur le modèle d'une communication scientifique; de proposer des améliorations aux montages expérimentaux; d'évaluer la pertinence des modèles mathématiques utilisés. Contenu : dans le but de s'initier aux techniques utilisées dans le laboratoire de recherche de chimie physique et en accord avec la professeure ou le professeur, choix d'un projet qui s'étale sur tout le trimestre. Démonstration de la pertinence du projet. Production d'un rapport d'étape démontrant sa connaissance du sujet ainsi que la méthodologie utilisée. Présentation d'un rapport final résumant le travail du trimestre.

CHM 520 3 cr.

Automatisation et interface

Objectifs: s'initier à l'utilisation du microprocesseur et du microordinateur dans le contrôle des appareils ainsi que dans l'acquistion automatique et le traitement des données, maîtriser les méthodes de lissage d'observations expérimentales; utiliser les protocoles de communication ordinateurs-ordinateurs, ordinateurs-multimètres.

Contenu: structure interne d'un ordinateur. Périphériques. PIA, VIA, IO. Convertisseur AD, DA. Diodes, transistors, ampli-op, Darlington, OPTOTRIACS. Communications, séries, parallèle, GPIB-IEEE, RS 232, RS 422. Contrôle de puissance AC-DC. Méthode de Savitsky-Golay.

CHM 701 2 cr.

Séminaire I

Objectif: présenter oralement l'information scientifique devant un auditoire de collègues, de professeures et de professeurs et répondre aux questions de l'auditoire.

Contenu : présentation orale et publique d'un séminaire, défense de l'argumentation devant le public et devant des professeures et des professeurs. Le sujet chois in e devra pas être dans le domaine de recherche immédiat de l'étudiante ou de l'étudiant. La présence à toutes les présentations organisées dans le cadre de ce cours et la participation active dans la discussion sont obligatoires.

CHM 703 3 cr.

Électrochimie organique (3-0-6)

Objectifs: s'initier à la technique de l'électrosynthèse organique; étudier le comportement des espèces intermédiaires qui interviennent au cours des réactions électrochimiques; maîtriser les principes fondamentaux d'électrosynthèse pour le développement de nouvelles méthodes de synthèse organique. Contenu: matériaux d'électrodes, solvants et électrolytes supports. Transformations électrochimiques de groupements fonctionnels (électrophores); substitutions, éliminations, additions, couplages et cyclisations. Exploitation de la sélectivité des réactions électrochimiques en synthèse organique fine et industrielle.

Préalable : CHM 503

CHM 704 3 cr.

Électrochimie avancée (3-0-6)

Objectifs : acquérir les bases théoriques des techniques électroanalytiques et de la struc-ture de la double couche électrique; apprendre à résoudre les problèmes de diffusion et de cinétique des processus électrochimiques. Contenu : l'interface métal-solution, double couche électrique : thermodynamique, modèle de Gouy-Chapman-Stern, adsorption spécifique d'ions et des molécules neutres, détermination des paramètres de la double couche: cinétique des transferts d'électrons. diffusion en solution, applications de la méthode de la transformée de Laplace aux problèmes de diffusion et de cinétique; revue des bases théoriques des techniques électrométriques et des applications de ces techniques dans la cinétique : chronoampérométrie, polarographie, voltampéromètrie cyclique, électrode tournante à disque et à anneau, méthode d'impédance, chronopotentiométrie, simulations numériques des problèmes électrochi-

Préalables : CAN 400 et CHM 503

CHM 707 3 cr.

Photochimie et chimie radicalaire (3-0-6)

Objectif : s'initier à la nature et la détection des radicaux.

Contenu: production des radicaux. Réactions et conformations des radicaux. Lois de la

photochimie. Processus photophysiques primaires. Processus photochimiques primaires. Réactions photochimiques types.

CHM 798 20 c

Activités de recherche

CHM 799

Mémoire

CHM 800 2 cr.

14 cr.

Séminaire II

Objectif: présenter oralement l'information scientifique devant un auditoire de collègues, de professeures et de professeurs et répondre aux questions de l'auditoire.

Contenu: présentation orale et publique d'un séminaire, défense de l'argumentation devant le public et devant des professeures et des professeurs. Le sujet choisi ne devra pas être dans le domaine de recherche immédiat de l'étudiante ou de l'étudiant. Le présence à toutes les présentations organisées dans le cadre de ce cours et la participation active dans la discussion sont obligatoires.

CHM 801 2 cr.

Séminaire III

des retenues).

Sommaire : séminaire au niveau de la deuxième année du doctorat.

CHM 802 3 cr. Séminaire III

Objectif : être capable de présenter et de défendre un projet de recherche (énoncé du problème, approches privilégiées et métho-

Contenu : concevoir et proposer un projet de recherche accompagné d'un texte avec références. Présentation et défense orale de la

rences. Presentation de deletas orale de la proposition devant un public et un comité d'au moins quatre professeures et professeurs.

Activités de recherche
CHM 897 6 cr.

Examen général

CHM 899 30 cr.

CIQ

CIQ 300 3 cr.

Chimie inorganique I (4-0-5)

Objectifs: acquérir les connaissances fondamentales sur la structure atomique en vue de pouvoir interpréter la classification périodique des éléments; maîtriser ensuite la notion de liaison chimique afin de pouvoir comprendre et interpréter les propriétés et réactions des composés inorganiques et aborder les éléments de chimie de coordination.

Contenu : révision de chimie générale. Structures électroniques des atomes. Le tableau périodique et les propriétés des éléments des groupes principaux. La structure de l'atome, radioactivité, réactions et énergie nucléaire. Les théories de la liaison chimique; description des structures, propriétés et réactions de composés inorganiques. Introduction à la chimie de coordination et organométallique.

IQ 400 3 cr.

Chimie inorganique II (3-1-5)

Objectifs: maîtriser les concepts de base des propriétés chimiques et physiques des complexes inorganiques avec les métaux de transition; apprendre les théories qui expliquent les comportements structuraux et spectroscopiques, et la réactivité des composés inorganiques; s'initier à la chimie organométallique et bio-inorganique.

Contenu: propriétés des éléments de transition et des composés de coordination. Les théories des liaisons dans les complexes. Le champ cristallin, la spectroscopie électronique et le magnétisme. La réactivité des complexes et des coordinats, la catalyse. Introduction à la chimie des terres rares et des complexes bio-inorganiques.

Préalable : CIQ 300

CIQ 401 3 cr.

Chimie inorganique - Travaux pratiques (0-6-3)

Objectifs: apprendre les méthodes de synthèse de complexes d'éléments de transition; maîtriser les méthodes analytiques permettant d'en étudier les structures.

Contenu: synthèse et propriétés physiques et chimiques de quelques complexes des éléments représentatifs et de complexes de coordination avec les éléments de transition. Étude de composés organométalliques et bioinorganiques.

Préalable : CIQ 400

CIQ 700 3 ci

Symétrie et structure moléculaire (3-0-6)

Objectifs: approfondir les connaissances relatives aux méthodes de détermination des structures cristallines par la diffraction de R-X; être capable d'effectuer de telles déterminations et d'en interpréter les résultats.

Contenu : transformations de Fourier et opérations de comvolution. Densités électroniques. Théorie de la diffraction pour les monocristaux. Méthodes photographiques pour l'étude de la symétrie cristalline. Production des R-X. Mesures diffractométriques. Détermination précise des paramètres cristallins. Conditions expérimentales pour la mosure des intensités. Détermination des structures. Solutions au problème des phases. Méthodes de Fourier. Méthodes directes. Affinement des structures. Techniques de moindres-carrés. Analyse et discussion des résultats. Méthodes graphiques de représentation. Application à des structures modèles.

CIQ 701

3 CI

Chimle inorganique avancée (3-0-6)

Objectifs: apprendre les réactions de base en synthèse organométallique et être capable d'appliquer ces réactions à la synthèse de complexes organométalliques plus élaborés.

Contenu: réactions d'addition oxydative et d'élimination réductive, d'insertion intramoléculaire, d'attaque nucléophile et électrophile. Applications synthétiques des métallocènes, et des complexes alcyniques, alcéniques, diéniques et aromatiques.

COR

COR 200 2 cr.

Introduction à la chimie organique (2-1-3)

Objectifs: connaître les fonctions et la nomenclature internationale. Savoir représenter les molécules organiques en trois dimensions; comprendre l'utilité des structures résonantes; expliquer des phénomènes organiques par les effets électroniques et l'encombrement stérique. Connaître les mécanismes des réactions S_n2 et S_n1. Contenu: l'aisons dans les molécules organi-

Contenu : liaisons dans les molécules organiques : hybridation, orbitales moléculaires, Fonctions et nomenclature. Stéréochimie : conformation, configuration. Structure et réactivité : acidité et basicité, effets inducteurs, résonance et tautométrie. Mécanisme des réactions SN1 et SN2 et la stéréochimie. S'offre aux étudiantes et aux étudiants de biologie.

COR 300 3 cr.

Chimie organique I (3-1-5)

Objectifs : acquérir les notions de base en chimie organique, par exemple : expliquer la géométrie des molécules en fonction de l'hybridation; établir la réactivité des molécules par rapport à leur structure; utiliser les effets électroniques pour prédire et expliquer certaines propriétés chimiques et physiques; apprendre à représenter les molécules avec des formules spatiales tridimensionnelles; se servir de ces concepts stéréochimiques dans la compréhension de certains phénomènes. Contenu : les liaisons dans les molécules organiques. Classes de composés et réactions caractéristiques. Isomérie. Conformation et stéréochimie. Induction, résonance, tautomérie, caractère aromatique. Substitution électrophile aromatique.

COR 301 3 cr.

Chimie organique II (3-1-5)

Objectifs: acquérir et pouvoir appliquer les connaissances et les concepts fondamentaux reliant la structure et la réactivité (stabilité) des composés organiques; être apte à prédire la réactivité de certaines molécules visà-vis une transformation donnée.

Contenu: revue des réactions acide-base et effets de structure sur l'acidité. Addition et substitution nucléophile sur les composés carbonylés. Substitution nucléophile sur les carbones saturés. Réactivité des carbanions en a du groupement carbonyle.

Préalable : COR 300

COR 306 Chimie organique (2-1-3)

Objectifs: prédire et expliquer la nucléophilie et la réactivité de certaines espèces chimiques; expliquer la régiosélectivité ou la stéréosélectivité de certaines réactions; appliquer l'analyse conformationnelle au besoin dans ces derniers concepts.

Contenu: additions et substitutions aux composés carbonylés. Énolates et condensations. Élimination. Addition électrophile aux alcènes. S'offre aux étudiantes et aux étudiants de biologie.

Préalable : COR 200

2 cr.

COR 400

Chimie organique III (3-1-5)

Objectifs: prédire et expliquer la régiosélectivité et/ou la stéréosélectivité d'élimination et d'addition; prédire et expliquer l'orientation et la vitesse de substitution aromatique en fonction de facteurs électroniques et stériques.

3 cr.

Contenu : réactions d'élimination. Additions électrophiles aux sites insaturés. Substitution électrophile en série aromatique : mécanisme et portée.

Préalable : COR 301

COR 401 3 cr.

Chimie organique IV (3-1-5)

Objectifs: savoir interpréter les relations entre structure et réactivité des molécules organiques; pouvoir évaluer la réactivité des systèmes conjugués, des carbènes et nitrènes, des radicaux neutres et des radicaux ions; être en mesure d'appliquer les notions d'électrochimie et de photochimie organiques; être capable d'utiliser les orbitales moléculaires frontières pour expliquer ou prédire la réactivité.

Contenu: additions électrophiles et nucléophiles aux systèmes conjugués. Réarrangements molèculaires. Réactions péricycliques. Réactions radicalaires. Réductions et oxydations électrochimiques. Réactions photochimiques. Symétrie des orbitales et orbitales frontières dans les réactions organiques.

Préalable : COR 301

COR 402 2 cr.

Chimie organique - Travaux pratiques (0-6-1)

Objectifs: apprendre à travailler avec des produits chimiques à risques moyens et dans des conditions expérimentales malaisées; bien mener des synthèses à pius d'une étape. Contenu: expériences utilisant des techniques plus poussées en chimie organique nécessitant une manipulation soignée. Reproduction d'une synthèse de travaux publiés dans des revues scientifiques. Synthèses en

Préalable : CHM 400 ou l'équivalent

COR 501

3 cr

3 cr

Synthèse organique (3-1-5)

microéchelle.

Objectifs: apprendre à connaître et à utiliser les méthodes et stratégies de la construction moléculaire en chimie organique; acquérir une connaissance approfondie des mécanismes de réaction

Contenu: exemples tirés du domaine classique des produits naturels (phéromones, terpènes, sesquiterpènes, stéroïdes, prostaglandines, ryanodol) et non naturels (twistane, triquinacène).

Préalable : COR 301

COR 508

Nouveaux réactifs en chimie organique (3-1-5)

Objectifs: connaître les réactifs modernes de synthèse organique; comprendre les concepts avancés de la stéréoisomérie; appliquer ces connaissances à la conception des étapes menant à une synthèse asymétrique de composés optiquement actifs.

Contenu: asymétrie et synthèse; énergétique; analyse conformationnelle. Formation stéréosélective de liens carbone-carbone : énolate, addition nucléophile avec organométalliques. Catalyse de réactions asymétriques. Formation stéréosélective de liens carbonehétéroatome.

Préalable : COR 401 ou COR 501

COR 700 3 cr.

Chimie organique avancée (3-0-6)

Objectifs: apprendre à découvrir et à apprécier l'importance des effets stéréoélectroniques dans les mécanismes de réaction et le développement de nouvelles stratégies en synthèse organique.

Contenu: exemples tirés de parutions récentes dont Deslongchamps, Stereoelectronic Effects in Organic Chemistry (Pergamon Press)

COR 701 3 c

Chimie physico-organique avancée (3-0-6)

Contenu: cinétique. Thermodynamique. Équations linéaires d'énergie libre. Fonctions d'acidité. Catalyse acido-basique. Effets isotopiques. Paires d'ions. Mécanismes de réactions.

COR 702 3 d

Orbitales moléculaires en chimie organique (3-0-6)

Objectifs: savoir évaluer l'importance de la symétrie des orbitales dans les réactions organiques; être en mesure de construire des diagrammes de corrélation d'orbitales moléculaires de réactions péricycliques; pouvoir établir l'importance relative des effets électrostatiques et des interactions orbitalaires à l'amorce d'une réaction et dans les effets séréoélectroniques; être capable d'utiliser les orbitales frontières pour expliquer et prédire la réactivité.

Contenu: construction d'orbitales moléculaires. Symétrie des orbitales. Construction de diagrammes de corrétation d'orbitales moléculaires de réactions péricycliques. Théorie de la perturbation: effets électrostatiques et interactions orbitalaires (orbitales frontières). Contrôle stéréoélectronique. Étude des réactions péricycliques, ioniques, radicalaires et photochimiques.

COR 703

Résonance magnétique (3-0-6)

Objectif: apprendre les principes de résonance magnétique nucléaire (RMN) afin d'être en mesure de comprendre les publications récentes où la RMN est utilisée comme outil de recherche en chimie organique.

Contenu: principes fondamentaux de RMN, séquences d'impulsions, RMN 2 Dimensions, temps de relaxation, RMN haute résolution de solides, stratégies d'assignation de structure et de conformations, applications modernesses

CPH

CPH 305 2 c

Méthodes de la chimie physique (1-2-3)

Objectifs: maîtriser les différentes méthodes d'analyse statistique et de réduction des données; être capable d'utiliser un chiffrier électronique pour tracer les graphiques et traiter les données expérimentales; rédiger un rapport de laboratoire suivant les normes du Département de chimie.

Contenu: population, échantillon et distribution de Gauss. Analyse de l'erreur. Moyenne. Intervalle de confiance. Moindres carrés. Petits échantillons. L'étudiante ou l'étudiant devra exécuter cinq expériences de laboratoire illustrant des principes fondamentaux de la chimie physique. Les données générées lors de ces manipulations seront traitées à l'aide de méthodes statistiques.

Concomitante: CPH 307 ou CPH 311

CPH 307 3 cr.

Chimie physique (3-1-5)

Objectifs: connaître et comprendre les lois qui régissent les principaux phénomènes physico-chimiques; apprendre à tirer profit de certaines méthodes mathématiques qui pernettent, à partir des lois de la thermodynamique, de décrire le comportement de la matière; être capable d'appliquer les méthodes physico-chimiques à l'étude de certains phénomènes.

Contenu : les propriétés des gaz. Les principes de la thermodynamique. Le premier principe - conservation de l'énergie et ses conséquences; le deuxième principe - la notion d'entropie et la direction d'une évolution spontanée naturelle; machines thermiques et réfrigération; troisième principe - la recherche du zéro absolu. La théorie cinétique des gaz; la distribution de vitesse moléculaire, propriétés de transport.

CPH 308 2 cr.

Chimie quantique (2-1-3)

Objectifs : s'initier à la mécanique quantique; maîtriser les modèles solubles pour développer une compréhension des concepts fondamentaux de la chimie quantique; utiliser les concepts de la chimie quantique pour décrire le tableau périodique.

Contenu: théorie des particules et ondes modèle de Bohr, relation de Heisenberg, équation de Schrödinger, particule libre et dans un potentiel, effet tunnel, oscillateur harmonique, atome d'hydrogène, atomes polyélectroniques, principe d'exclusion, termes spectroscopiques, effet Zeeman et Stark. Théorie de perturbation.

Préalables : MAT 195 et MAT 292

CPH 311 4 cr.

Chimie physique (4-2-6)

3 cr.

Objectifs: acquérir des connaissances opérationnelles en chimie physique; être en mesure d'appliquer les notions de thermodynamique chimique à des systèmes biochimiques.

Contenu: théorie cinétique des gaz simpliitée. Forces intermoléculaires. La première et la deuxième loi de la thermodynamique. Enthalpie libre. Solutions électrolyte et non électrolyte. Potentiel chimique. Réactions d'oxydation-réduction dans le contexte biochimique. Destinée aux étudiantes et aux étudiants en biochimie.

CPH 405

∠ Cr.

Chimie physique - Travaux pratiques (0-4-2)

Objectifs: maîtriser des méthodes d'analyse et de réduction de données; utiliser un chifrier électronique pour tracer les graphiques et traiter les données expérimentales; rédiger des rapports; utiliser différentes sondes et traducteurs pour mesurer les variables expérimentales.

Contenu : études expérimentales des propriétés thermodynamiques de systèmes à l'équilibre (équilibre de phases, équilibre chimique, mélanges de liquides); électrochimie et propriétés des solutions électrolytiques; phénomènes de surface; macromolécules en solution; spectroscopie atomique et moléculaire. Préalables : CPH 305 et CPH 311 ou CPH 407

CPH 407 3 cr

Équilibre et solutions (3-1-5)

Objectifs: être en mesure d'appliquer les notions de thermodynamique chimique à des systèmes classiques en solution et aux changements d'état; envisager ensuite des systèmes plus complexes comme les colloïdes et les structures polymériques.

Contenu: solutions de non-électrolytes. Potentiel chimique et autres quantités molaires partielles. Solutions idéales et non idéales. Propriétés colligatives. Règle de phase de Gibbs et équilibre entre phases. Tension superficielle. Solutions électrolytiques: conductance, thermodynamique et piles électrochimiques. Colloïdes et polymères.

Préalable : CPH 307

CPH 408

3 cr.

Spectroscopie (3-1-5)

Objectifs: approfondir les connaissances et les concepts de la chimie quantique; développer une compréhension du modèle de l'orbitale molèculaire; s'initier à l'application du modèle d'orbitale moléculaire à la structure et la réactivité moléculaire; s'initier à l'utilisation de la symétrie moléculaire et à la théorie des groupes en chimie théorique; déterminer la structure des molécules; calculer les différents paramètres moléculeires tels la longueur de liaison et les angles interatomiques; calculer la force et l'énergie des liens interatomiques

Contenu : approximation de Born-Oppenheimer, molécule H₂+, diatomiques, hybridation, configuration moléculaire; introduction à la symétrie, groupes de symétrie; application aux systèmes conjugués, règles de Woodward-Hoffman; équation de Schrödinger dépendante du temps; théorie de l'absorption, émission, diffusion Raman; spectroscopie multiphotonique; spectre atomique, rotation pure, vibration, rotation-vibration, électronique; principe de Franck-Condon; couplage spin-orbit, spin-spin; théorie des modes normaux; application de la théorie des groupes aux règles de sélection.

Préslable : CPH 308

CPH 507 3 cr

Thermodynamique statistique et cinétique (3-1-5)

Objectifs: se familiariser avec l'interprétation microscopique de la thermodynamique; matriser les méthodes de cinétique afin d'établir les mécanismes de réactions chimiques. Contenu: cinétique descriptive, analyse de résultats cinétiques, réactions et mécanismes, dynamique chimique. Méthodes de probabilité et de statistique, concepts fondamentaux de thermodynamique statistique, calcul des propriétés thermodynamiques de translations, vibrations et rotation, capacité calorifique, équilibre chimique, théorie du complexe activé.

Préalable : CPH 307

CPH 508

3 cr.

Chimle des surfaces (3-1-5)

Objectifs: connaître, comprendre et appliquer les notions de base et les principes des techniques de la chimie des surfaces; analyser certains processus catalytiques de la chimie des surfaces au niveau atomique.

Contenu: introduction à la chimie des surfaces; structure des surfaces; thermodynamique et dynamique des processus chimiques à la surface; propriétés électriques des surfaces; nature de la liaison chimique à la surface; introduction aux techniques de la chimie des surfaces (UHV, XPS, UPS, LEED, MBE, STM, AFM); catalyse à la surface; introduction à la science électrochimique des surfaces surfaces controduction à la science électrochimique des surfaces; introduction à la science des surfaces; introduction à

CPH 509

Chimle des solutions et colloïdes (3-1-5)

Objectif: être capable d'analyser les principaux phénomènes qui déterminent les propriétés physico-chimiques des solutions ou suspensions, notamment la solvatation, les interactions entre solutés et les phénomènes moléculaires à l'interface solution-solide dans les systèmes colloïdaux.

Contenu: introduction à divers concepts importants pour la compréhension des solutions et suspensions, dont une classification des propriétés macroscopiques et microscopiques des solvants, la thermodynamique des phénomènes de solvatation de molécules neutres et d'électrolytes et certaines propriétés de tensio-actifs et de macromolécules en solution. Caractéristiques des systèmes colloïdaux en fonction des phénomènes chimiques ou électrochimiques à l'interface solidesolution.

CPH 700 3 cr.

Chimle des Interfaces (3-0-6)

Objectif: se familiariser evec la physico-chimie des interfaces gaz-liquide, liquide-liquide, gaz-solide, et liquide-solide.

Contenu: principaux sujets d'application: l'absorption, la chromatographie, les phénomènes aux électrodes et les colloïdes.

CPH 701 3 cr.

Chimie des solutions (3-0-6)

Objectif: étude de la thermodynamique et des autres propriétés physico-chimiques des liquides et des solutions. Une attention particulière est accordée aux solutions aqueuses en regard de leur importance industrielle et biologique.

CPH 702 3 cr.

Thermodynamique statistique (3-0-6)

Objectif: approfondir les méthodes qui permettent d'obtenir les propriétés thermodynamiques macroscopiques à partir des propriétés moléculaires et d'un modèle moléculaire d'un système physico-chimique.

Contenu: rappel de thermodynamique. Méthode des ensembles. Distribution la plus probable. Fonctions thermodynamiques. Fluctuations. Statistiques Fermi-Dirac, Rose-Einstein et Maxwell-Boltzmann. Gaz parfait monoatomique, diatomique et polyatomique. Équilibre chimique. Lien entre les mécaniques statistique, quantique et classique. Gaz parfaits Fermi-Dirac et Bose-Einstein faiblement et fortement dégénérés; gaz d'électrons et condensation Bose-Einstein. Radiation du coras noir. Propriétés thermodynamiques des

cristaux. Gaz imparfaits. Fonctions de distribution. Modèles de l'état liquide et des solutions. Statistiques sur les réseaux. Adsorption. Approximation Bragg-Williams.

CPH 708

3 cr.

Chimie théorique et modélisation moléculaire (3-0-6)

Objectifs: acquérir les principes de la mécanique quantique appliqués à des problèmes de chimie; maîtriser les techniques et les programmes numériques disponibles pour la modélisation en chimie; s'initier aux nouvelles méthodes théoriques et numériques en dynamique moléculaire et modélisation.

Contenu: rappel de mécanique quantique; méthode de Hartree-Fock pour les atomes et molécules; interaction de configuration, méthodes semi-empiriques; équation de Dirac, méthode Hartree-Fock-Dirac pour les atomes et molécules. Rappel de mécanique classique (équations de Lagrange, Hamilton), champs de forces moléculaires, méthodes de mécanique moléculaire. Techniques de calcul des potentiels moléculaires électrostatiques pour l'étude des interactions intermoléculaires. Technique du « Best Molecular Fitting » pour la comparaison des molécules. Stratégies de recherche de molécules actives en pharmacologie quantique.

CPH 708

3 cr.

Polymères et systèmes polymériques (3-0-8)

Objectifs: connaître et comprendre les techniques de caractérisation des polymères; comprendre les relations établies entre les structures moléculaires et les propriétés; connaître les différents types de matériaux de polymères et leurs propriétés mécaniques correspondantes et donner une interprétation moléculaire pour un comportement spécifique; apprécier l'importance de l'orientation des polymères, des systèmes multiphasés (mélanges et copolymères) et des polymères et cristaux liquides; choisir des techniques spectroscopiques ou thermiques pour étudier un problème spécifique.

Contenu: théories décrivant la cristallisation des polymères, la transition vitreuse, l'élasticité caoutchoutique et la viscoélasticité. Polymères orientés. Mélanges de polymères. Polymères cristaux liquides. Copolymères

CPH 787 3 c

Sujets de pointe en chimie physique (3-0-6)

Objectifs: connaître les domaines de la chimie qui se sont développés récemment et qui ne font pas encore l'objet de livres; saisir les fondements de ces domaines au point de pouvoir en faire une synthèse.

Contenu: par définition, les sujets choisis seront portés à évoluer rapidement. À titre d'exemples, les sujets traités pourront être la microscopie à effet tunnel, les microscopies à force atomique, le contrôle cohérent de réactions chimiques par lasers, les effets multiphotoniques en RMN de solides.

CPH 790 3 cr.

Spectroscopie avancée (3-0-8)

Contenu: équations de Maxwell, Lagrangien, Hamiltonien, potentiel vectoriel. Théorie semi-classique du rayonnement et transitions. Perturbations magnétiques, théorie du déplacement chimique. Fonctions de corrélation; largeur homogène, inhomogène; relaxationT1 etT2. Théorie quantique du champ électromagnétique; états cohérents, habilés; transformations de jauge. Théorie au moment angulaire; facteurs de Clebsch-Gordon. Mécanique semi-classique; principe de Franck-Condon. Théorie des collisions; théorie de la matrice de transition, diffusion.

CTB

CTB 111

3 cr

Introduction à la comptabilité

Objectif: se familiariser avec les principes et rapports comptables.

Contenu: étude d'un modèle comptable traditionnel à l'aide d'une simulation, préparation et analyse d'états financiers, étude du cycle comptable, l'entreprise à propriétaire unique, la correction des erreurs, la comptabilité de caisse, la comptabilisation de l'encaisse et des comptes clients. Cette activité est mutuellement exclusive à CTB 103.

CTB 301

_

Éléments de fiscalité

Objectifs: apprendre les principes de calcul de l'impôt, selon le type de revenu et le type de contribuable. Prendre conscience des opportunités de planification.

coportunités de parimetation Contenu : assujettissement à l'impôt et notion de résidence. Le calcul du revenu d'emploi, d'entreprise et de biens. Règles d'amortissement fiscal. Le calcul des gains en capital. Autres types de revenus et de déductions. Calcul du revenu imposable et de l'impôt des particuliers et calculs pour les corporations. Opportunité d'incorporer une entrenise.

CTB 331

3 cr

3 cr.

Éléments de comptabilité de manage-

Objectif : s'initier à la comptabilité de gestion en tant qu'instrument de prise de décision dans l'organisation.

Contenu: prix de revient par commande et à fabrication uniforme et continue. Production conjointe. Planification et contrôle budgétaire. Coûts pertinents et décisions à court terme. Seuil de rentabilité. Comptabilité et rentabilité des centres de responsabilité. Méthode des coûts variables.

Préalable : CTB 111

FCI

ECL 110

Écologie générale (3-0-6)

Objectifs: comprendre la structure des écosystèmes et les relations entre les organismes et leur milieu biotique ou abiotique; développer l'habileté à penser en terme de coûts et bénéfices ainsi que des caractères et des comportements individuels; acquérir le vocabulaire de base en écologie.

Contenu: l'évolution par sélection naturelle. Les facteurs limitants, les composantes des écosystèmes; le distribution et la dispersion des individus, la dynamique de population. Les relations entre organismes: la prédation, la compétition, le paresitisme, le mutualisme; stratégie de reproduction; flux d'énergie, production primaire et secondaire, cycles des éléments; richesse et diversité des écosystèmes; écologie insulaire, successions.

ECL 308 3 cr.

Les sols vivants (2-2-5)

Objectifs: reconnaître l'importance des processus écologiques reliés au sol; se familiariser avec certains groupes d'organismes habitant le sol; comprendre les relations étroites qui existent entre les organismes du sol et le développement des végétaux; étudier l'impact des interventions anthropiques sur les dynamiques du sol.

Contenu : l'activité biologique du sol : écologie, biologie, biochimie et chimie des sols. Les cycles des éléments nutritifs et les flux d'énergie dans le sol. Les organismes du sol. La biologie du sol en relation avec la pédogénèse, la succession écologique et la gestion des sols.

Préalables : BCM 112, ECL 110 et MCB 100

ECL 402

2 cr.

Écologie aquatique (2-0-4)

Objectif: comprendre les notions de base en écologie aquatique (incluant l'eau douce et salée).

Contenu: géomorphologie, évolution des écosystèmes, physico-chimie (eau, lumière, température, oxygène, carbone, azote, phosphore), eutrophisation, précipitations acides, biologie (bactéries, phytoplancton, zooplancton, insectes, poissons...), restauration. Aspects importants d'écologie aquatique, surtout les aspects physico-chimiques.

Préalable : ECL 110

ECL 403

1 cr.

Écologie aquatique - Travaux pratiques (0-3-0)

Objectifs : maîtriser les techniques d'échantillonnage de base en écologie aquatique; acquérir une expérience de travail sur le ter-

Contenu: cartographie; géomorphologie; hydrologie; chimie de l'eau; bathymétrie; échantillonnage et identification du zooplancton, du phytoplancton, d'organismes benthiques; capture de poissons.

Préalable : ECL 402

ECL 510 3 cr.

Écologie végétale (3-0-6)

Objectifs: comprendre comment la distribution et l'abondance des plantes sont influencées par les facteurs abiotiques, ainsi que par les interactions biotiques; comprendre les principaux concepts fondamentaux et les développements récents en écologie végétale. Contenu : facteurs écologiques. Niveaux d'organisation en écologie. Structure et limites des communautés végétales. Compétition et dynamique dans les communautés. Structure et dynamique des populations. Écologie de la reproduction. Cycle vital et environnement. Dynamique de croissance et forme des individus. Photosynthèse et environnement. Facteurs abiotiques et adaptations. Acquisition et utilisation des ressources. Interactions biotiques. Évolution au sein des

Préalables : BOT 102 et ECL 110

ECL 513

Travaux pratiques d'omithologie (0-1-2)

Objectifs: connaître les principes fondamentaux de l'identification des oiseaux; être apte à manipuler correctement des techniques et instruments d'observation du comportement, de mesure et de capture des oiseaux; comprendre et être capable d'expliquer des méthodes d'estimation des effectifs des avifaunes ainsi que les interrelations adaptatives et fonctionnelles entre les oiseaux et leur milieu.

Contenu: initiation à l'identification des oiseaux; méthodes d'observation, de manipulation, de mesure et de capture; méthodes d'estimation des effectifs par cartographie, IPA, IKA et EFP; le territorialité, l'espacement social, l'utilisation de l'espace; les méthodes de contrôle; manipulations et préparation des spécimens pour des études en laboratoire et prélèvements; élaboration d'un protocole de recherche; rédaction de rapports.

Préalable : ECL 110

ECL 516

3 cr.

Écologie animale (3-0-6)

Objectifs: approfondir les concepts de base en dynamique des populations; comprendre le fonctionnement des relations coévolutives entre animaux et milieux; apprendre à mesurer les paramètres caractérisant les populations animales de même que leurs effets sur le milieu.

Contenu : facteurs influençant la distribution : la dispersion, le comportement de choix d'habitat, la prédation et la compétition intra- et interspécifique. Propriétés de population : densité, structure d'âge. Croissance des populations. Statistiques démographiques. Stratégies de reproduction. Relations prédateurs-proies. Herbivorie et phénomènes coévolutifs. Contrôle des populations problèmes. Effets de la fragmentation des communau-

Préalable : ECL 110

ECL 619 3 cr.

Travaux pratiques d'écologie (0-6-3)

Objectifs : utiliser les techniques de base pour

récolter des données de terrain dans les domaines de l'écologie végétale et animale. Se servir de logiciels pour estimer des paramètres et pour caractériser des communautés et des populations de plantes et d'animaux. Faire preuve d'un esprit critique et d'une ca-

pacité de travail autonome. Contenu : description morphologique et physico-chimique du sol; méthodes d'échantillonnage pour étudier la distribution spatiale des plantes et la dendrologie; limitations et applicabilité des méthodes selon différents contextes d'étude. Méthodes d'échantillonnage, de capture et de marquage d'espèces animales pour étudier leur distribution selon différents habitats; méthodes de télémétrie pour estimer les domaines vitaux et les mouvements; méthodes indirectes comme le broutage ou les crottins pour estimer l'impact des animaux sur la végétation; utilisation de logiciels pour estimer la densité d'une population et les domaines vitaux des individus; manipulation et analyse des données pour rédiger des rapports scientifiques.

Préalable : ECL 110

Concomitantes : ECL 510 et ECL 516

ECL 521

2 cr.

Initiation à la recherche écologique I

Objectif: apprendre à développer un protocole expérimental original dans un domaine de recherche théorique ou appliquée.

Contenu: recherche bibliographique pertinente. Poser l'hypothèse pertinente, les objectifs ou les questions reliées au phénomène soulevé. Développer la méthodologie appropriée allant dans le sans de l'hypothèse. Rédaction d'un rapport sous forme de manuscrit contenant la bibliographie, la description des techniques utilisées et les résultats anticipés de l'étude.

Préalables : ECL 110 et ECL 519

FCL 523

2 cr

Initiation à la recherche écologique II

Objectifs: apprendre à interpréter des données écologiques, les discuter et présenter un rapport sous forme de manuscrit scientifique complet.

Contenu : récolte de données écologiques. Analyses statistiques de ces données. Interprétetion des résultats. Rédaction d'un rapport final sous forme de manuscrit comprenant l'introduction, la méthodologie, les résultats, la discussion et la liste des références.

Préalable : ECL 521

ECL B24

2 00

Éléments d'éthologie (2-0-4)

Objectifs : connaître et comprendre les principes fondamentaux de l'éthologie et les relations avec l'écologie.

Contenu: perception de l'environnement; stratégies de survie individuelles: la quête de la noumiture et l'image de la recherche; les comportements de prédation et antiprédateurs; l'espacement social; l'utilisation de l'espace; la communication; stratégies de reproduction et de vie en groupe; les rythmes; ontogénèse et phyllogénèse des comportements; éthologie pratique et appliquée pour gêrer les ressources à l'aide des comportements.

Préalables : ECL 110 et ZOO 104

ECL B25

1 cı

Travaux pratiques d'éthologie (0-3-0)

Objectifs: à l'aide de vidéos et d'expérimentations avec des animaux en laboratoire et en nature, connaître et appliquer les techniques d'étude du comportement animal pour comprendre les concepts en éthologie. Contenu: les bases de l'observation du comportement et leur qualification; réactions à des

portement et leur qualification, reaccions a des stimuli; comportement de toilettage; l'image de la recherche; la formulation d'hypothèses; l'espacement social; la reproduction; projet personnel sur le terrain; hiérarchie sociale, agressivité, apprentissage, conditionnement animal, communication, vie en groupe, comportement, etc. : rédaction de rapports.

Préalables : ECL 110 et ZOO 104

ECL 530

2 cr.

Écophysiologie animale (2-0-4)

Objectifs: comprendre comment les animaux s'adaptent à leurs environnements par les moyens physiologiques et comportementaux et comment leurs capacités physiologiques

influencent leur distribution dans l'espace et dans le temps.

Contenu: bilan aqueux; pertes d'eau par évaporation pulmonaire et cutanée, concentration urinaire et excrétion des déchets azotés, adaptations aux milieux désertiques. Bilan énergétique: dépenses quotidiennes d'énergie, coûts de la locomotion, réserves lipidiques, migration et adaptation à l'hiver. Consommation et distribution d'oxygène: respiratoire, pulmonaire et cutanée, adaptations des animaux plongeurs; thermorégulation: régulation de la température corporelle, isolation, métabolisme, hypothermie, adaptations des homéothermes au froid

Préalables : ECL 110, PSL 104 et ZOO 104

ECL 600

2 cr.

Écologie des paysages (2-0-4)

Objectifs : comprendre comment le paysage est structuré en une mosaïque d'unités paysagères, des parcelles, qui interagissent entre elles et comment ces parcelles ont des fonctions sur la dynamique des écosystèmes; connaître les différents processus et perturbations qui génèrent et maintiennent l'hétérogénéité du paysage; connaître les différentes mesures qui caractérisent quantitativement les patrons spatiaux des parcelles dans un paysage; montrer comment les structures des parcelles affectent les flux des animaux, des végétaux et des éléments nutritifs; appliquer les principes inhérents à l'écologie du paysage aux problèmes de gestion des ressources et d'aménagement du territoire.

Contenu: opposition des notions d'homogénéité et d'hétérogénéité. Concepts théoriques écologiques (ex. théorie de la hiérarchie). Caractéristiques quantitatives des parcelles (forme, taille) et de la structure du paysage (diversité, connectivité). Mouvements et survie des populations animales en métapopulation selon le type d'arrangement spatial des parcelles dans le paysage. Modélisation de la dynamique et évolution du paysage.

Préalables : BOT 102, ECL 110 et ECL 510

ECL 603

Conservation et gestion des ressources - Travaux pratiques (0-3-0)

Objectifs: à l'aide de lectures dirigées, analyses de données, discussions de groupe, présentations et séminaires, connaître les problèmes actuels en conservation et apprendre à enalyser différents points de vue, échelles des valeurs et objectifs visés dans l'utilisation des ressources naturelles

Contenu: discussion des façons alternatives d'utiliser les ressources naturelles; vision des problèmes par certains spécialistes; visites sur le terrain; préparation de rapports pour discussions en groupe, incluant un programme de conservation et un budget financier.

Concomitante : ECL 606

ECL 804

2 cr.

1 cr.

Évolution et génétique des populations (2-0-4)

Objectifs: comprendre les processus par lesquels les populations et les espèces animales et végétales évoluent dans les milieux naturels et, plus spécifiquement, comment la base génétique des organismes varie en fonction de la sélection naturelle, des mutations et des effets aléatoires. Contenu : variabilité génétique dans les populations : les gênes, les allèles et les diffèrents génotypes et phénotypes. Notions d'adaptabilité : la survie et la reproduction différentielles des différents génotypes et phénotypes; calcul des fréquences des allèles et de l'équilibre Hardy-Weinberg; facteurs qui causent des changements dans l'abondance des génotypes dans les populations : sélection naturelle, dérive génétique, mutation et migration; exemples de l'évolution observable

Préalables : ECL 110 et GNT 302

ECL 606

3 cr.

Conservation et gestion des ressources (3-0-6)

Objectifs: comprendre les défis de la conservation et de la gestion des ressources naturelles face aux pressions économiques et sociales d'aujourd'hui; être capable d'identifier les problèmes et de trouver des solutions aux conflits entre différents utilisateurs des ressources naturelles.

Contenu : définitions, quoi conserver et pourquoi; espects biologiques : taxonomie, génétique, biogéographie, parasitologie liées à la conservation; aspects socialux : économie des ressources, lois et braconnage, estimation de la valeur économique et sociale des ressources naturelles; développement durable; gestion de la faune; espèces rares et en danger d'extinction; fragmentation de l'habitat: espèces introduites.

Préalables : BOT 102, ECL 110 et ECL 510

ECL 608

3 cr.

Écologie internationale (3-0-6)

Objectifs : connaître les conditions particuliàres de fonctionnement des écosystèmes dans différentes parties du monde; comprendre la problématique et les exigences du transfert de technologie; comprendre l'importance des facteurs abiotiques, biotiques et sociaux dans la problématique des transferts de technologie; situer un projet de coopération internationale dans le contexte des politiques de développement d'aide et de coopération et comprendre le rôle des divers intervenants; connaître les bases de la gestion de projet en coopération; percevoir les particularités du contexte de réalisation d'un projet de coopération ou d'échange scientifique pour un pays donné et concevoir un projet qui en tienne compte.

Contenu: aperçu des grands écosystèmes naturels du monde et des impacts humains avec accent particulier sur un pays choisi; principes et historique du transfert de la technologie, impacts écologiques et sociaux; leçons à en tier à partir d'études de cas; initiation aux organismes de coopération internationale et à leur mede de fonctionnement; politiques de développement et coopération canadienne, méthode de gestion de projet, cadre logique, théorique et application; élaboration, présentation et négociation d'un projet; noctions de la biogéographie et de l'histoire d'un pays choisi. Contexte social, culturel, politique et enormique.

Préalables : BOT 507, ECL 510 et ECL 519

ECL 708

2 cr.

Écologie des oiseaux (2-0-4)

Objectifs: lire, comprendre, analyser et discuter en groupe des articles récents en ornithologie; expliquer, défendre et critiquer des idées; diriger des discussions; rédiger un rap-

Contenu: choix de sujets parmi les suivants: méthodologia de dénombrement, dynamique des populations d'oiseaux, facteurs limitant les nombres, organisation spatiale et temporelle des communautés, isolement écologique, sélection des habitats, aspects écologiques des populations: thépries écologiques.

ECL 708 2 cr

Écologie végétale avancée (2-0-4)

Objectifs: comprendre, analyser, discuter et synthétiser certains développements contemporains en écologie vénétale

Contenu: nature, structure et limites des communautés végétales. Processus dynamiques de structuration au niveau des communautés, des populations et des individus (croissance des populations et des individus). Ecologie de la reproduction. Organisation spatiale et processus écologiques. Le cours est donné principalement sous forme de séminaires; certains thèmes pourront être traités de façon particulière en fonction des sujets de recherche des étudiantes et des étudiants

ECL 710 2 cr.

Écologie et comportement (2-0-4)

Objectifs : faire des études approfondies d'articles et d'ouvrages sur des sujets écologiques et éthologiques et rédiger des rapports détaillés

Contenu: en plus des thèmes couverts par les chercheurs de la concentration, l'étude portera sur des thèmes tels que : influence de facteurs limitants ou nocifs sur le choix alimentaire, stratégie de reproduction par rapport au climat ou à la nutrition, compétition et structure des communautés, coévolution de plantes et leurs frugivores, pollinisateurs ou herbivores, relation prédateu-proie.

ECL 716 2 cr.

Mammalogie avancée (2-0-4)

Objectif: animer la discussion à partir de la synthèse de certains travaux scientifiques récents particulièrement importants dans le domaine de l'écologie des mammifères.

Contenu : lectures dirigées et rencontres hebdomadaires pour discuter de sujets développés. Concepts de stratégies optimales de nutrition et de reproduction chez les mammifères. Cycles écologiques réguliers. Répartition des ressources chez les herbivores. Mécanismes de défenses des plantes pour contrer l'action des herbivores.

ECL 720 1 cr.

Sujets spéciaux (écologie) (1-0-2)

Objectifs: approfondir certains thèmes spécialisés ainsi que les récents progrès en écologie; effectuer des travaux de synthèse dans son domaine de spécialisation.

Contenu: rencontres hebdomadaires pour présenter et discuter des derniers développements en écologie fondamentale ou en méthodes d'analyse.

ECL 722

2 cr.

Écologie théorique (2-0-4)

Objectif : réaliser une synthèse à partir de la compréhension et de la réflexion globale sur des concepts écologiques de pointe.

Contenu : lectures dirigées et rencontres hebdomadaires pour discuter des thèmes. Les discussions portent sur le rôle de la théorie en écologie; son importance dans la compréhension de la nature; le concept de la variation des populations; la quête optimale de nourriture; les problèmes de prédiction de population; les superniches; la défense et la dynamique des systèmes plantes-herbivores; la théorie de la diversité; la compétition et la distribution des populations.

ECL 726 2 cr.

Éco-physiologie avancée (2-0-4)

Objectifs: approfondir les connaissances dans le domaine de l'éco-physiologie des plantes ou des animaux; comprendre et être capable d'analyser et de discuter en groupe des articles récents en éco-physiologie; être capable d'expliquer de défendre et de critiquer des idées; être capable de faire une synthèse des concepts de pointe dans la compréhension des mécanismes physiologiques de l'adaptation des organismes aux facteurs de l'environnement.

Contenu : lectures dirigées et rencontres hebdomadaires pour discuter des sujets développés, Échanges gazeux, respiration, mêtabolisme basal, photosynthèse et bilan énergétique. Relation entre la disponibilité des ressources nutritives et croissance, morphologie et composition. Adaptations aux stress hydriques, nutritifs, climatiques ou autres. Toxicité et composés secondaires.

FC1 727

Analyses des données écologiques (1-0-2)

Objectifs: apprendre à planifier et à maîtriser l'analyse des données écologiques utilisant des techniques de base; comprendre l'utilisation des analyses plus avancées; reconnaître les principaux problèmes d'analyse qu'on retrouve dans les publications en écologie.

Contenu: révision des techniques statistiques élémentaires et introduction de techniques multivariées. Test d'hypothèse, corrélation et cause-effet. Différences entre les manipulations expérimentales et les observations en écologie. Problèmes de non-indépendance, de biais en échantillonnage, de pseudoréplication: moyens pour éviter ces problèmes. Chaque étudiante et étudiant présentera sa propre stratégie d'analyse de ses données.

ECL 750 2 cr.

Analyses avancées des données écologiques (2-0-4)

Objectifs: connaître le fonctionnement et maîtriser l'utilisation des méthodes avancées d'analyse des données écologiques; se familiariser avec les logiciels nécessaires à ces analyses; être capable d'entreprendre des analyses de ses propres données de recherche

Contenu: modèles généraux linéaires, méthodes de lissage, modèles généraux additifs. Méthodes de permutation. Diverses méthodes d'ordination.

FCN

ECN 447

3 ...

Économie des ressources

Objectif: introduire le raisonnement économique aux problèmes d'utilisation, d'épuisement, de renouvellement, de substitution et de conservation des ressources naturelles renouvelables.

Contenu: classification des ressources naturelles (R.N.). Aperçu historique. Démographie et utilisation des R.N. Place des R.N. dans la croissance économique. Disponibilité des R.N. et changements technologiques. Les modes d'appropriation des R.N. La gestion des ressources-stock (énergie). La gestion des ressources-renouvelables (pécheries, production forestière). L'économie de l'environnement. Conservation. Interventions gouvernementales.

Antérieure : ECN 430

EMB

FMB 106

3 cr

Biologie du développement (3-0-6)

Objectifs: acquérir une vision globale des principaux processus et mécanismes impliqués dans le développement, principalement chez les vertébrés; être capable d'identifier les analogies dans la morphogénèse entre différents groupes.

Contenu : structure des gamètes et mécanismes de la fécondation; civage, blastulation et gastrulation; quelques exemples d'embryogénèse et mécanismes impliqués : oeil, système digestif, membres et système urogénital; les mécanismes du développement : activités cellulaires localisées; notions de gradients; interactions cellulaires, induction, différenciation et mort cellulaire.

Préalables : BCL 102 et BCM 112

FND

END 502

3 cr.

Endocrinologie (3-0-6)

Objectifs: connaître et comprendre les notions de base sur les mécanismes des hormones et leurs récepteurs ainsi que leurs principaux effets biologiques.

Contenu: généralités, méthodologie, récepteurs, mécanisme d'action hormonale. L'importance de l'hypothalamus. Hormones contrôlant la glycémie, la régulation des fluides, le métabolisme du calcium, la digestion. Stéroïdes sexuels.

Préalable : BCM 104 ou BCM 318 Concomitante : PSL 104

ENT

ENT 101

1 cr.

Entomologia - Travaux pratiques (0-3-0)

Objectifs : connaître les différentes façons de piéger les insectes; être capable de manipuler une collection d'insectes, de les identifier et d'utiliser différentes méthodes d'analyse des populations provenant du piégeage.

Contenu: collection du matériel selon diverses techniques de piégeage; identification des ordres et des familles principales; analyse des collections selon les types d'habitats et les méthodes de piégeage; examen de certains cycles de vie; de pièces buccales, d'antennes, d'ailes, de pattes en vue de mieux identifier les insectes.

Concomitante: ENT 102

ENT 102 2 cr.

Entomologie (2-0-4)

Objectifs: comprendre le mode de vie des insectes; étudier la structure externe et interne d'un insecte; apprendre à identifier les insectes et à en faire une collection; apprécier le rôle des insectes; apprécier différentes méthodes de lutte contre les insectes revaeurs.

Contenu: prépondérance des insectes. Morphologie, anatomie, biologie et classification des divers ordres d'insectes. Importance des insectes, insectes utiles et insectes nuisibles. Méthodes de lutte biologique, chimique et autres. Emploi des principaux insecticides pour combattre les insectes domestiques.

Préalable : ECL 110

ENV

ENV 700 3

Éléments de gestion de l'environnement

Objectifs: expliquer, de façon macroscopique, les différentes dimensions possibles des problématiques environnementales, bien si sir la pertinence et le rôle de chacun dans la recherche de solutions aux problèmes environnementaux: reconnaître la nécessité d'interventions concertées dans ce domaine. Contenu : gestion des ressources naturelles : gestion agricole et environnementale, mines et environnement. Entreprise et problèmes environnementaux. Éthique de l'environnement. Gestion des matières résiduelles à risque. Ministère de l'Environnement et de la Faune. Gestion intergouvernementale de l'environnement. Planification et intervention d'urgence environnementale. Systèmes de gestion environnementale.

ENV 701 3 c

Technologies de l'environnement

Objectif : choisir les technologies optimales en tenant compte des contraintes économi-

Contenu: comparaison des technologies propres et des technologies conventionnelles. Les principales sources d'information sur les technologies. L'industrie québécoise de la protection de l'environnement. L'épuration des eaux des lieux d'enfouissement sanitaire. Traitement des eaux souterraines contaminées par les produits pétroliers. Traitement des résidus miniers. Traitement des déchets industriels dangereux. Traitement des sols contaminés. Traitement des émissions atmosphériques. Traitement des sédiments contaminés. Techniques d'assainissement des eaux usées. Conditionnement des déjections animales. Visites industrielles: station d'épuration des eaux usées, centre de traitement des déchets dangereux et système de contrôle de pollution de l'air.

ENV 705 3 cr.

Études d'Impacts et prospectives

Objectifs: connaître les règlements en vertu desquels sont exigées des études de répercussions et d'impacts; être familier avec les principaux intervenants en la matière; être capable d'intervenir à toutes les étapes du processus impactuel, aussi bien à titre de rédacteur qu'à celui de réviseur, connaître les règles de comportement et d'éthique qui s'appliquent; comprendre l'importance relative et les limites de la démarche scientifique en matière de prise de décision environnementale.

Contenu: description des processus décisionnels et de leurs modifications prévisibles à court et moyen terme. Étude théorique et pratique des étapes du déroulement d'un dossier type et des modalités de compantion devant les tribunaux administratifs courants. Définition des principales règles d'éthique du domaine : limites de la responsabilité du professionnel, obligations mutuelles du professionnel et de son client, relations avec les médias, etc. Description des principales approches en usage pour la réduction des conflits : négociation, consultation et médiation.

ENV 708

Médiation et processus de décision

Objectifs: comprendre les processus décisionnels actuellement en usage au sein des gouvernements fédéral, provincial et municipal en matière d'environnement; analyser la nature et l'origine des situations conflictuelles courantes et saisir les principales approches utilisées afin de régler les conflits; appliquer les processus de négociation, de médiation et de consultation publique et comprendre leurs avantages et leurs inconvénients.

Contenu: description théorique des étapes du déroulement de dossiers types dans les processus décisionnels. Définitions de la négociation, de la médiation et de la consultation publique. Analyse de la médiation au sein des processus décisionnels et, à l'aide d'études de cas, des circonstances où la médiation a de processus décisionnels et à l'aide d'études de cas, des circonstances où la médiation a d'ét appliquée. Étude des types de formation préparant le mieux à la médiation, du rôle, des habiletés et des attitudes d'un médiateur efficace. Simulations au du comportement de chaque participante ou participant dans les trois modes de résolution de conflits.

ENV 708 3 cr.

Principes de l'écodécision

Objectifs: connaître et comprendre les notions principales de l'écosystème comme l'écologie, l'écodéveloppement et l'écodécsion; comprendre certains modèles fondamentaux tels la « boule-de-flèche», la classification écologique des espaces, le « gâteau de l'environnement »; analyser l'effet de l'activité humaine sur l'harmonie et le désordre de l'environnement; connaître désordre de l'environnement; connaître desorprendre les effets de la production sur l'écosystème; comprendre le modèle de l'écopyramide et l'appliquer en fonction de la richesse des habitants des grands espaces; utiliser le modèle de l'écopyramide pour anahyser la situation urbaine et le monde rural.

Contenu : démonstration du point de vue écologique basé sur l'écosystème. « Cyclage » des ressources. Modèles fondamentaux; « boule-de-flèche », classification écologique des espaces, « gâteau de l'environ-nement ». Marque de l'homme sur le paysage. Excursion sur la valorisation et la protection d'un milieu naturel dans un lieu semiurbain. Harmonie et désordre dans l'environnement. Structure et métabolisme des établissements humains. Excursion sur les retombées du transport aérien dans une zone agricole. Écopyramide, modèle de la problématique environnementale. Application de l'écopyramide à des milieux riches (nord) et pauvres (sud). Excursion sur les impacts industriels de la Rive Sud du fleuve Saint-Leurent. Crise et interdépendance planétaire et le Québec. Excursion sur la diversité urbaine dans le « Faubourg-Québec ».

ENV 709

3 cr.

Télédétection appliquée à l'environnement

Objectif: acquérir une connaissance générale de la télédétection pouvant permettre de comprendre et de résoudre des problèmes anyionnementaux.

Contenu : spectre électromagnétique et principales quantités spectroradiométriques utilisées en télédétection. Systèmes d'acquisition des données, formation de la couleur. Acquisition, analyse et interprétation des images dans les différents domaines spectraux. Signatures spectrales dans le visible et le proche infra-rouge. Effet de l'atmosphère sur les images. Thermographies et hyperfréquences. Plates-formes aéroportées et satellitaires. Applications en agriculture, foresterie, urbanisme, gestion des catastrophes naturelles et anthropiques. Travaux pratiques d'interprétation visuelle d'irragges.

ENV 711

3 cr.

Environnement et développement international (3-0-6)

Objectifs: analyser un problème environnemental de pays à économie en développement, en comprendre les causes et en déterminer les conséquences (santé, économie, productivité, etc.): élaborer des stratégies de résolution des problèmes environnementaux qui prendront en compte les coutumes locales, la structure sociale, les priorités fixées par l'état de santé des populations, les technologies appropriées disponibles et accessibles et les possibilités de financement et de maintien des infrastructures,

Contenu: principaux indicateurs de développement. Pauvreté, endettement et conséquence sur l'environnement. Relations entre l'état de santé et la qualité de l'environnement. Conséquences de l'insuffisance d'assainissement. Démographie et environnement. Contamination de l'eau. Évacuation des eaux pluviales. Évacuation et traitement des eaux usées. Gestion des déchets soildes. Contamination atmosphérique. Contamination par le bruit des grandes villes. Dégradation des ressources du sol. Énergie et environnement. Développement industriel et environnement. Avancement des fermes et environnement. Limitations au développement durable. Organisation et financement de projets environnementaux internationaux.

ENV 712

3 cr.

ENV 717

3 cr.

ENV 730

3 ...

Systèmes de gestion environnementale

Objectifs: utiliser, aux points de vue technique, juridique, administratif et informatique, les principaux outils de gestion environnementale en entreprise; comprendre les bénéfices et coûts de l'implantation d'un système de gestion environnementale; appliquer les normes de la série ISO 14000.

Contenu: vérification de conformité environnementale (VCE); vérification du système de gestion environnementale. Pratiques techniques de gestion environnementale en entreprise pour quelques secteurs-clès de l'industrie. Gestion environnementale et ISO 14000.

ENV 715 3 cr.

Évaluation des risques et études d'impacts

Objectifs: appliquer les notions d'analyse prévisionnelle du risque et d'évaluation des impacts environnementaux. Prendre des décisions relatives aux impacts environnementaux engendrés par la réalisation d'un projet. Reconnaître les avantages, les inconvénients, les possibilités et les limites de l'évaluation des impacts et de l'analyse prévisionnelle du risque à titre d'outils de prise de décision.

Contenu : partie A : analyse prévisionnelle : historique des besoins; concepts de base; données de base nécessaires: bases et principes. Analyse préliminaire des dangers (APD). Analyse des modes de défaillance et de leurs effets (AMDE). Analyse des modes de défaillance, de leurs effets et de leur criticité (AMDEC). Analyse HAZOP. Analyse des risques à la santé. Analyse des risques éco-toxicologiques (ARÉ). Concepts de fiabilité humaine. Analyse prévisionnelle de fiabilité humaine (EPFH). Partie B : évaluation des impacts environnementaux : catégories d'intervenants et leurs cadres de gestion. Caté gories et incidences comportementales. Avis de projet. Guide de référence et son interprétation. Comparaison des variants et le choix de la variante optimale. Description détaillée du projet. Description détaillée des éléments de l'environnement. Identification et description des impacts potentiels. Impacts résiduels. Analyse de conformité. Surveillance et suivi. Limites de la responsabilité de la ou du professionnel. Obligations mutuelles de la ou du professionnel et de sa ou de son client. Difficultés habituelles lors du cheminement d'un dossier.

ENV 716

3 ...

Gestion des matières résiduelles

Objectif: appliquer les principes et les connaissances acquises en gestion de l'environnement au domaine de la gestion intégrée des résidus

Contenu: types de résidus. Caractéristiques. Méthode de récupération et de mise en veleur des matières secondaires (3R-V). Production, entreposage, collecte, traitement et élimination. Enfouissement sanitaire sécuritaire. Compostage, incinération, pyrolyse. Déchets municipaux, biomédicaux, nucléaires, agro-alimentaires, résidus miniers, boues, déchets dangereux. Traitement des lixivats et des biogaz. Fermeture et postfermeture. Visites industrielles.

Communication en environnement

Objectifs: gérer l'information à caractère environnemental au travail et dans des situations de controverse ou de crise; préparer une conférence de presse et une entrevue à caractère public; comprendre les lois d'accès à l'information; maîtriser les principales techniques de comportement face à une caméra. Contenu: introduction à la communication. Médias: journaux, agences de presse et autres. Message journalistique. Accès à l'information; cadre juridique. Organisation d'une conférence de presse. Pochettes de presse. Outils de communication au Québec.

ENV 721

Gestion des risques environnementaux

Objectif : conneître et appliquer les diverses méthodes utilisées pour la gestion des risques environnementaux liés à l'entreprise, ainsi que les méthodes qualitatives et quantitatives en rapport avec l'analyse de risques. Contenu : identification des enjeux et des sources de risques. Analyse des risques, identification des dangers et des scénarios plausibles d'accidents, estimation des conséquences. Elaboration d'un plan d'action et de son efficacité pour le contrôle des risques. Évaluation des bénéfices et des coûts prévus. Contrôle des risques et vérification de l'atteinte des objectifs.

ENV 722 3 cr.

Écologie environnementale

Objectifs: aborder l'écologie comme une science de synthèse des relations des organismes vivants entre eux et avec leurs milieux divers; aborder et discuter différents thèmes d'actualité et leurs conséquences sur l'environnement et l'homme.

Contenu : caractérisation des principaux écosystèmes de la biosphère et de leurs composantes abiotiques et biotiques; facteurs principaux du biotope, composantes diverses de la biocénose; dynamisme des écosystèmes en termes de transferts de matière et d'énergie, de chaînes alimentaires, d'évolution et de succession des populations; notions de communauté, d'habitat, de niche écologique; l'homme et l'environnement; étude particulière de quelques problèmes écologiques d'actualité, et notamment : l'eutrophisation des milieux lotiques et lentiques, le zonage écologique, le dépérissement des forêts, les résistances aux bioxydes, pesticides et herbicides, l'impact des polluants industriels sur les écosystèmes. Des conférenciers sont invités pour présenter certains thèmes d'actualitá

ENV 723 3 c

Géomatique de l'environnement

Objectifs: s'initier à l'analyse spatiale et aux systèmes d'information géographique. Apprendre à maîtriser l'utilisation d'un logiciel de SIG

Contenu: méthodes d'analyse spatiale et champs d'application, composantes d'un SIG, notions d'interpolation, modélisation spatiale, notion d'erreurs et d'incertitude, champs d'application d'un SIG et sélection.

Économie de l'environnement

Objectifs : connaître les frontières de l'économie de l'environnement. Expliciter les relations entre l'économie de l'environnement et l'éthique, la psychologie, le droit, l'écolonie

gie, ...
Contenu : perceptions de l'environnement, caractérisation des polluants, droits de propriété, prise de décision intertemporelle, problèmes d'irréversibilité et d'incertitude, contributions des écosystèmes au bien-être, valeurs d'usage et de non usage, analyses économiques écologiques, instruments de protection de l'environnement, politiques environnementales et distribution du revenu, équité intergénérationnelle, croissance économique et développement écologiquement durable, commerce international et environnement.

ENV 733

3 cr.

Gestion de projet multidisciplinaire Obiectif : comprendre la dynamique du tra-

vail en équipe multidisciplinaire dans le cadre de la gestion d'un projet.

Contenu: relation de collaboration et principaux phénomènes dans le travail en groupe. Multidisciplinarité et interdisciplinarité. Particularités et difficultés du travail multidisciplinaires. Projet dans un groupe ou une organisation. Concertation, planification et responsabilités dans la mise en œuvre d'un projet.

ENV 742 3 cr

Vérification environnementale

Objectif: connaître les divers aspects de la vérification environnementale: évaluer de façon objective, systématique et documentée l'intégration des questions environnementales dans une organisation.

Contenu : les types de vérifications et évaluations environnementales, l'approche méthodologique, les compétences et les habiletés du vérificateur, le processus de vérification, les programmes de vérifications inteme et externe. Le droit professionnel, la responsabilité du vérificateur et ses obligations, l'éthique et le code de déontologie, les mécanismes d'application des lois environnementales, la planification d'une vérification à partir des critères juridiques. L'intégration de la vérification dans un système de gestion environnementale (SGE), exemples de SGE disponibles, importance des aspects environnementaux significatifs dans le SGE. Études de cas et simulations.

ENV 743 3 cr

Évaluation environnementale de site

Objectifs: connaître les divers aspects de l'évaluation environnementale de site: détection des problèmes de contamination actuels et potentiels des sites (nature, emplacement et ampleur), évaluation des risques et élaboration des mesures correctives qui s'impo-

Contenu : évaluation environnementale de site, historique de développement, processus évolutif et mise en contexte dans le cadre des procédures de normalisation. Méthodologie et outils de travail. L'investigation : recherche documentaire, visite des lieux, entrevues. La caractérisation (échantillonnage). L'analyse de risques à la santé et à l'environnement. L'élaboration du rapport. La réhabilitation de site. Les lois environnementles s'appliquant à l'évaluation de

site, le choix des normes à vérifier. La vérification de conformité environnementale. Études de cas et simulations.

ENV 756 3 cr.

Gestion des ressources naturelles

Objectifs: acquérir des connaissances sur les défis de la conservation et les principes de gestion des ressources forestière, agricole, minière et halieutique; analyser l'utilisation de ces ressources et de la préservation des écosystèmes; situer le Québec au niveau international dans ce domaine; connaître les principaux intervenants, les outils, a législation et les différents paramètres utilisés pour la prise de décision; comprendre les problématiques afin d'identifier des solutions dans un contexte de gestion de développement durable.

Contenu: le profil et le potentiel des ressources naturelles au Québec. Leurs conséquences sur les écosystèmes. Normes d'intervention, aménagement, transformation, restauration, monitoring, outils de gestion. Enjeux pour l'avenir et aspects sociaux: économie des ressources, lois, règlements et développement durable.

ENV 761 3 cr.

Technologies de l'environnement : Introduction

Objectifs: àtre en mesure de choisir les meilleures technologies disponibles économiquement applicables (BAT) pour enlever les charges polluantes dans l'air, l'eau, le sol et les boues. Connaître les procédés utilisés, les critères de conception, les spécifications techniques, les caractéristiques de dimensionnement, les paramètres d'exploitation, les méthodes de contrôle et d'instrumentation et les aspects économiques (coûts d'investissement et d'O&E). Des grilles d'analyse comparatives seront proposées pour faire la sélection du BAT et aussi du BCT (best conventional polluant control technology) et le BPT (best practicable control technology currently available).

Contenu : étude des technologies propres vs les technologies conventionnelles d'assainissement. Procédés de traitement physico-chimique biotechnologies. Réduction des déchets par incinération. Extraction des HxCx et des BPC par pyrolyse. Méthodes pour décontaminer les sols 4R-V. Contrôle des plues acides, des CFC, du CO, du smog, et autres produits toxiques. Filtration et épuration des eaux, des lixurats des eaux industrielles et agricoles. Régénération des huiles usées. Restauration des anciens sites miniers. Compostage. Réduction du bruit communautaire. Enfouissement sanitaire et à sécurité accrue. Traitement des boues. Confinement des déchets nucléaires. Protection contre les radiations ionisantes. Reboisement. Valorisation de la biomasse, conservation des ressources et récupération de l'énergie. Protection du littoral et contrôle de l'érosion.

ENV 762 3 cr.

Droit de l'environnement

Objectifs: comprendre les principaux mécanismes juridiques visant à assurer la protection de l'environnement au Oudebec; connaître les principaux problèmes juridiques afférents à la protection de l'environnement; développer les aptitudes et les habiletés d'analyse spécifiques au droit de l'environnement. Contenu : les principaux mécanismes juridiques prévus dans la Loi québécoise sur la qualité de l'environnement et ses règlements d'application (notamment, la prohibition de polluer, les certificats d'autorisation, la réglementation directe, le régime d'évaluation et d'examen des impacts et la participation du public); les mécanismes prévus dans la Loi canadienne sur la protection de l'environnement et sur l'évaluation environnementale; les remèdes de droit commun utilisés à des fins de protection de l'environnement. La jurisprudence pertinente sera analysée dans le cadre de l'étude de chacun des régimes déià indiqués.

ENV 764 3 cr.

Écotoxicologie (3-0-6)

Objectifs : acquérir les notions de base de l'écotoxicologie et des outils écotoxicologiques; être capable de concevoir, de planifier et d'ordonner une démarche d'évaluation écotoxicologique et d'en évaluer les résultats. Contenu: notions d'écotoxicologie. Démarches écotoxicologiques : sources, cheminement, bioessais, danger, bioindicateurs d'exposition et risque. Assurance de qualité en écotoxicologiques ; échantillonnage, points à vérifier, précision, exactitude et attentes pour les analyses. Problèmes écotoxicologiques à gérer : effluents industriels, site d'enfouissement, sols contaminés, HAP. Outils écotoxicologiques : génotoxicité, cancérogénicité, indice de toxicité, analyse de risque toxicologique. Forces et faiblesses de l'écotoxicologie appliquée à la gestion environnementale dans un contexte de prévention.

ENV 765 3 cr.

Éthique de l'environnement

Objectifs: situer les débats publics sur les questions environnementales; évaluer les décisions prise en environnement à partir d'un point de vue éthique; développer une approche interdisciplinaire par le biais de la résolu-

Contenu: éthique et environnement: point de vue de la sociologie et de la philosophie; modèles décisionnels en environnement: naturaliste, utilitariste, dialogique; résolutique sociale. Enjeux idéologiques dans les décisions environnementales.

ENV 787 6 cr.

Fassi

Objectifs: réaliser un exposé écrit sur un sujet ayant fait l'objet d'une étude personnelle. Faire état de son aptitude à traiter systématiquement d'un sujet pertinent au domaine de l'environnement.

Contenu: variable selon le sujet traité; l'essai doit témoigner de l'approche interdisciplinaire utilisée dans le traitement du problème environnemental abordé

ENV 769

Problématiques de santé environnementale

Objectif: acquérir les connaissances et les habiletés de base nécessaires à la compréhension et à la gestion des problématiques de santé liées à la pollution de l'environnement

Contenu: notion du risque en santé environnementale. Évaluation de l'exposition; mesures en épidémiologie. Stratégies d'étude. Application des méthodes épidémiologiques. Introduction à la toxicologie appliquée. Utilisation de la toxicologie et de l'épidémiologie en santé environnementale. Rôle des intervenantes et des intervenants en santé publique et gestior du risque.

ENV 773 3 cr.

Indicateurs environnementaux

Objectif: acquérir la capacité de comprendre la structure et les propriétés des indicateurs environnementaux et d'en évaluer la pertinence dans divers domaines d'application. Contenu: définition d'un indicateur environnemental. Nomenclature, structure et propriétés des indicateurs. Critères de choix d'un indicateur. Utilisation des indicateurs suivant leur structure. Avantages et inconvénients des indicateurs: biophysiques, socioéconomiques, de santé, etc.

ENV 775 Chimie de l'environnement

Objectifs: comprendre les principaux phénomènes chimiques qui régissent l'environnement; identifier les différents polluants et leurs sources: comprendre leurs réactions.

3 cr.

leurs sources; comprendre leurs réactions. Décrire l'impact des diverses formes d'énergie sur l'environnement; interpréter les résultats d'analyse environnementale.

Contenu : chimie du milieu hydrique et processus associés à l'eau naturelle, l'eau potable et l'eau polluée. Chimie atmosphérique et processus d'effet de serre, de destruction de la couche d'ozone, de production de smogs chimiques et photochimiques, de formation de précipitations acides. Chimie des sols et rôle des amendements. Description des polluants organiques et inorganiques ainsi que leurs modes de propagation. Relations entre les ressources naturelles, l'énergie et l'environnement. Analyse critique de problèmes environnementaux.

ENV 776 3 cr.

Séminaire de recherche multidiscipil-

Objectifs : intégrer sa formation disciplinaire aux connaissances multidisciplinaires; connaître et comprendre les sujets connexes à peine abordés dans son domaine disciplinaire; intégrer les connaissances dans divers domaines de l'environnement; faire un cheminement personnel permettant de développer son propre domaine de recherche, préciser ses objectifs, son hypothèse de travail et sa méthodologie multidisciplinaire en vue de présenter un séminaire aux cycles supérieurs. Contenu : séminaires multidisciplinaires hebdomadaires présentés par des chercheuses et des chercheurs de l'Université et de l'extérieur, suivis d'ateliers sous forme de discussions en classe afin d'en intégrer les éléments. Les sujets abordés sont reliés au génie de l'environnement, à la chimie de l'environnement, à la conservation des espèces, au développement durable, à la communication, à l'économie environnementale et à la santé des écosystèmes. Pour faire suite à ces séminaires et ateliers. l'étudiante ou l'étudiant précise son sujet de recherche, identifie les éléments multidisciplinaires de son projet, élabore ses objectifs et hypothèses de travail et façonne son approche expérimentale grâce à une série d'ateliers.

FNV 777

3 cı

Séminaire de formation professionnelle

Objectifs: acquérir la capacité de mener une réflexion interdisciplinaire au moyen de discussions entre les étudiantes et les étudiants de formations diverses; développer le professionnalisme des étudiantes et des étudiants, tant au niveau de la présentation que de la rédaction de rapports; connaître le fonctionnement et l'infrastructure des principaux intervenants et intervenantes en environnement.

Contenu: exposés et discussions hebdomadaires traitant de thèmes reliés aux différents domaines de l'environnement, présentés par les étudiantes et les étudiants, par des chercheuses et des chercheurs ou par des professionnelles et des professionnels en environnement. Rédaction d'un rapport traitant d'une problématique environnementale et des diverses alternatives envisegées pour solutionner cette problématique.

ENV 778

Cr.

Formation professionnelle en entreprise

Objectifs: apprendre à travailler à l'intérieur d'une équipe multidisciplinaire; analyser globalement des problèmes liés à l'environnement; mener une réflexion multidisciplinaire en eccomplissant un travail d'intérêt pratique, directement relie à l'environnement; connaitre les réalités concrètes et les exigences professionnelles du marché du travail.

Contenu: élaboration d'une offre de service pour une entreprise (cahier de charges, budget, calendrier d'échéancier, etc.). Exécution du mandat et présentation d'un rapport verbal et écrit

ENV 780 3 cr.

Stage en environnement

Objectifs : entrer en contact avec la pratique de résolution de problèmes environnementaux; se familiariser avec le milieu professionnel.

Contenu: participation à une activité d'une durée de trois mois dans un milieu professionnel des sciences de l'environnement. Cette activité donne lieu à un rapport de stage qui est évalué selon la notation succès échec.

ENV 796 16 cr.

Mémaire

Objectifs: rédiger et présenter un mémoire qui apporte une certaine contribution à l'avancement des connaissances et démontre des aptitudes pour la recherche.

ENV 797 6 cr.

Projet de recherche en environnement

Objectifs: sous la responsabilité des directrices et des directeurs de recherche, apprendre à analyser les travaux publiés dans le domaine de recherche et développer un esprit de synthèse; définir et de délimiter de façon concrète et opérationnelle le projet de recherche; faire la preuve de ses capacités de mener à bien une démarche interdisciplinaire en intégrant les conneissances de plusieurs disciplines dans une perspective renouvelée et cohérente.

Contenu: à partir d'un énoncé préliminaire définissant une problématique originale et identifiant des hypothèses de travail, l'étudiante ou l'étudiant est guidé conjointement par ses directrices et par ses directeurs de recherche dans une démarche qui comporte la compréhension de la problématique posée, la recherche, l'analyse et la synthèse de l'information pertinente, la réflexion critique sur les différents aspects du thème choisi, l'inventaire des moyens disponibles et la définition d'une méthodologie appropriée. Les résultats de cette démarche sont présentés dans un document déposé pour évaluation avant la fin de la deuxième session d'inscription.

ENV 798 9 cr.

Activités de recherche

Objectif: effectuer une recherche en environnement sous la direction conjointe de directrices et de directeurs de recherche de disciplines différentes.

FEC

FEC 222

3 cr.

Éléments de gestion financière

Objectif: saisir les aspects fondamentaux de la gestion financière dans son environnement immédiat. l'entreprise, et dans son environnement plus global, les marchés financiers. Contenu : le rôle essentiel (ou fonction) de la gestion financière pour toutes les prises de décision dans l'entreprise. Les fonctions importantes de la finance dans une économie de type capitaliste. L'objectif de l'entreprise dans le contexte de la prise de décision en matière de gestion financière. Le rôle du facteur intérêt dans la prise de décision. La décision d'investissement analysée dans le contexte canadien, en insistant notamment sur les données nécessaires, la méthodologie et les critères de décision.

FEC 333 3 cr.

Analyse des décisions financières

Objectif: approfondir la théorie, les concepts et la pratique de la gestion financière dans le contexte de l'environnement canadien.
Contenu: l'analyse marginale dans la prise de décision financière. Le traitement de l'incertitude dans la prise de décision financière, notamment l'analyse du risque, le concept de diversification et la relation risque-rendement. La détermination des taux de rendement minimum exigé. L'analyse de la structure de financement de l'entreprise, notamment l'effet de l'endettement sur le risque et le rendement et la structure optimum de canital.

Préalable : FEC 222

FEC 401 3 cr.

Environnement externe de l'entreprise

Objectif: s'initier aux différentes composantes externes à l'entreprise qui ont des effets directs sur le fonctionnement de celle-ci. Contenu: étude des différents éléments suivants: les contextes concurrentiel, économique, politique, légal, social, technologique et fiscal ainsi que le rôle que chacun joue sur le fonctionnement de l'entreprise. Activité offerte à l'intérieur du programme de baccalauréat en informatique de gestion.

Préalable : ADM 111

GBI

GBI 102

2 cr.

Biologie fondamentale (2-0-4)

Objectifs: comprendre les principes fondamentaux sous-tendant le phénomène de la vie; comprendre les éléments de similitude à travers la diversité des formes du vivant; acquérir une vision globale du vivant.

Contenu : évolution des molécules; évolution des cellules; évolution des espèces; homéostasie, irritabilité; reproduction, développement et croissance.

GBI 104 1 cr.

Éthique et biologie (1-0-2)

Objectifs: apprendre à formuler des problèmes bioéthiques, à structurer une opinion sur ces problèmes; être capable d'arriver à une conclusion logique et justifiée, d'exprimer et de défendre une position dans des situations de dialogue public.

Contenu : des problèmes actuels en bioéthique seront traités par une série d'ateliers qui prendront la forme d'enquêtes ou de débats publics pour évaluer la justification des actions. L'étudiante ou l'étudiant travaillera en équipe pour explorer les divers aspects d'un problème bioéthique et pour développer les arguments pour et contre certaines actions. Comme membre de l'équipe, l'étudiante ou l'étudiant devra participer à la préparation d'un dossier et ensuite prendre un rôle actif lors de son « enquête publique » sur ce dossier. Les membres de l'équipe devront prendre alternativement les positions opposées lors des deux semaines de débats et ensuite, participer à l'élaboration d'une synthèse des discussions

Préalable : ECL 110

GCH

GCH 840

3 cr.

Traitement de la pollution de l'air

Objectif : acquérir les notions fondamentales permettant de réaliser l'échantillonnage de l'air pollué et la conception de procédés d'épuration.

Contenu: identification qualitative et évaluation quantitative des émissions des polluants gazeux ou particulaires. Caractérisation des émissions selon les sources principales. Échantillonnage et analyse des effluents gazeux. Isocinétisme. Normes. Applications des principes d'opération unitaires pour le traitement d'effluents pollués. Absorption avec ou sans réaction chimique, adsorption avec régénération, oxydation catalytique ou biologique. Enlèvement des particules. Chambre de sédimentation, cyclones, filtres, tours de lavage.

Antérieures : GCH 210, GCH 215 et GCH 320

GCH 545 3 cr.

Traitement des eaux usées industrielles (3-3-3)

Objectif : évaluer les effets des déversements des eaux usées industrielles et concevoir des procédés de traitement.

Contenu : critères de la qualité des eaux. Indicateurs de la contamination humaine et industrielle. Normes exigées pour l'eau destinée à la consommation, la récréation et l'usage industriel. Capacité d'auto-épuration d'un cours d'eau. Procédés de traitements physiques, biològiques, chimiques. Applications industrielles. Travaux de laboratoire.

Préalable : avoir complété six sessions d'études en génie

3 cr

GCH 740

Techniques de caractérisation des maté-

Objectifs: maîtriser les diverses techniques modernes de caractérisation des matériaux et être capable de résoudre des problèmes pratiques d'identification, de réaction, d'altoration, d'évolution, de vieillissement de metériaux couramment utilisés par les ingénieures et les ingénieurs.

Contenu: microscopie optique, préparation des échantillons et applications. Limites d'utilisation. Interaction des reyonnements avec la matière (cas des RX et des électrons). Diffraction X. Fluorescence X. Microscopie électronique à balayage, ESCA, Auger, microscopie à transmission. Spectrométrie de masse des ions secondaires, activation neutronique, microscope à effet tunnel et environnemental. Caractérisation de la granularité, de la granulamétrie de la surface soécifique.

GCH 750 3 cr.

Procédés de traitement des eaux usées

Objectif: approfondir la compréhension des concepts régissant le fonctionnement des procédés physico-chimiques de traitement des eaux appliqués aux eaux résiduaires industrielles.

Contenu: traitements physico-chimiques pour le traitement des eaux résiduaires et des eaux de lessivage d'enfouissement de produit dangereux. Mesure des contaminants toxiques. Transfert gaz-liquide. Oxydation des produits organiques dans l'eau. Adsorption. Échange d'ions. Séparation par membranes.

Préalables : GCH 215 et GCH 320

GCI

GCI 615

3 cr.

Génie de l'environnement

Objectif: comprendre et maîtriser les notions de base en génie de l'environnement, soit principalement la problématique environnementale et les milieux; les réactions typiques et interactions intervenant dans ces milieux et le concept de bilan de matière; l'écologie appliquée et les impacts.

Contenu: introduction: envergure des problèmes environnementaux et importance des réactions et interactions dans les milieux. Réactions et réacteurs: stoechiométrie, cinétique, bilans de masse et d'énergie. Phénormènes physico-chimiques dans les milieux: chimie et caractéristiques des contaminants, paramètres de qualité, équilibre et échange. Phénomènes biologiques dans les milieux: les microorganismes et leur rôle, épidémiologie, cinétique des biomasses et biodégradation. Écologie appliquée: niveaux trophiques, flux d'énergie et de matière, cycles biogéochimiques et eutrophisation. Impacts. Exemples d'application. Travaux de labora-

Préalable : avoir complété trois sessions d'études

GCI 555 3 ci

Caractérisation des milieux contaminés

Objectifs: connaître les principales classes de contaminants et leurs propriétés; comprendre et appliquer les principes de base qui affectent les choix à faire dans la conception de protocoles d'échantillonnage et d'analyse des contaminants dans divers milieux environnementaux tels les eaux, les sols, les sédiments, les déchets et les gaz associés.

Contenu: paramètres physico-chimiques et biologiques de pollution, propriétés des contaminants, indicateurs. Polluents prioritaires, substances dangereuses et déchets spéciaux. Méthodes d'analyse instrumentale des contaminants. Protocoles d'échantillonnage, de sécurité et d'analyse: planification, méthodes statistiques, assurance et contrôle de qualité, présentation et interprétation des résultets. Travaux de laboratoire.

Préalable : GCI 510 Antérieure : GIN 115

GCI 721 3 er.

Traitement biologique des eaux usées Objectif : maîtriser les méthodes biologiques d'assainissement des eaux usées domestiques et industrielles et des boues.

Contenu : réactions et réacteurs. Microbiologie des eaux usées et du traitement. Traitement aérobie par biomasse en suspension; interactions avec la séparation solide-liquide de la biomasse, nitrification biologique. Traitement anaérobie par biomasse en suspension et immobilisée; dénitrification biologique. Déphosphatation biologique. Utilisation des sols. Projet ou travaux de laboratoire : montage et suivi d'un procédé biologique.

Préalable : GCI 510

GCI 733 3 cr.

Objectifs: être capable d'évaluer l'état et la migration des contaminants dans le sol, de choisir et d'élaborer des méthodes de traitement pour la décontamination des sols et de concavoir des sites d'enfouissement pour les

Géotechnique environnementale

déchets solides.
Contenu: contaminants dans les sols, classification, réaction avec le milieu. Transport des contaminants dans le sol, adduction, dispersion et diffusion; influence des contaminants sur la perméabilité. Site d'enfouissement, lixiviat, stabilisation des lixiviats, migration du front de contaminant, conception des membranes argileuses. Décontamination des sols, paramètres et analyses nécessaires à la conception d'un système de remédiation, revue des différentes techniques de remédiation.

GFI

GEI 336

3 cr.

Introduction à la microélectronique

Objectif: connaître les principes physico-chimiques sous-jacents à la fabrication de circuits intégrés. Contenu: notions physico-chimiques reliées aux différentes étapes de la réalisation des circuits intégrés VLSI sur silicium: matériau de base, lithographie, diffusion, implantation ionique, oxydation, plasmas, gravure, croissance de couches minces, métallisation. Notions d'intégration de ces techniques en vue de la réalisation d'éléments de circuits intégrés VLSI. Survol des techniques d'analyse disponibles, des méthodes de simulation, de l'assemblage et du contrôle de qualité des puces.

Concomitante: GEI 346

GEI 340

3 cr.

Conception de circuits Intégrés VLSI Objectif : concevoir des circuits intégrés mo-

nolithiques à très grande échelle (NLSI). Contenu: MOS: construction, fonctionnement, modèle, paramètres de fabrication et comportement électrique. Techniques de conception des circuits intégrés: dessin physique, règles, types de réalisation, application aux circuits logiques CMOS simples. Familiarisation avec la CAO de VLSI: schémas, dessins d'implantation, règles de dessin, règles électriques, extraction des paramètres, simulations électriques et logiques. Conceptude de réalisations commerciales. Conceptude de réalisations commerciales. Conceptudes de commerciales.

Antérieure : GEI 210

GEI 346

3 cr.

Fabrication de circuits intégrés

tion assistée par ordinateur de VLSI.

Objectif: acquérir les connaissances pratiques nécessaires à la fabrication des circuits LSI à base de silicium.

Contenu: réalisation en laboratoire des principales étapes menant à la fabrication de circuits intégrés: photo-lithographie, oxydation, gravure, croissance de couches minces, métallisation, diffusion et implantation ionique. Fabrication d'un circuit intégré VLSI en technologie CMOS et caracténsation de ce dispositif.

Concomitante: GEI 336

GEI 400 Circuits logiques (3-3-3)

3 cr.

Objectifs : adapter, concevoir et réaliser des systèmes numériques simples.

Contenu: analyse et synthèse des circuits logiques combinatories. Matérialisation des circuits logiques. Analyse et synthèse des circuits logiques séquentiels. Mémoires ROM, PLA et RAM. Représentation des nombres. Arithmétique binaire et BCD. Unités anthmétiques et unités d'ordinateurs.

GEJ 710

3 cr.

Conception avancée de circuits intégrés

Objectifs: concevoir des circuits intégrés à très grande échelle et maîtriser toutes les étapes précédant la soumission à des fondeurs pour fabrication.

Contenu : transistor MOS : construction, fonctionnement, analyse simplifiée, modèle physique détaillé, phénomènes secondaires et modèles SPICE. Procédés CMOS de Northern Télécom : étapes de fabrication, règles de dessin des masques et paramètres SPICE du procédé. Conception de circuits intégrés : circuits logiques et analogiques de base, analyse mathématique et simulations. Introduction au logiciel de conception de circuits intégrés EDGE de CADENCE : entrée de schéma, dessin des masques, vérification

des règles de dessin, extractions, simulations, cellules précaractérisées et formats de transmission GSDII et CIF.

GEI 711 3 cr

Fabrication et caractérisation de dispositifs semiconducteurs

Objectif: acquérir des connaissances complémentaires sur les techniques utilisées en fabrication de circuits intégrés et sur les méthodes de caractérisation de semiconducteurs et de dispositifs simples.

Contenu: fabrication des plaquettes de matériaux semiconducteurs, la lithographie, la gravure et la croissance sélective des couches, le dopage et la diffusion, les procédés de fabrication NMOS, CMOS et bipolaires, techniques de mesures électriques (couranttension, capacité-tension, effet Hall, mesures quatre-pointes), techniques optiques de caractérisation (ellipsométrie, photoluminescence, microscopie), les mesures de niveaux d'impuretés (DLTS) et la caractérisation physico-chimique des matériaux.

Préalable : GEI 713

GEI 712

Neurophysiologie applicable aux prothèses sensorielles

3 00

Objectif: acquérir les notions de neurophysiologie essentielles à la compréhension du fonctionnement des prothèses sensorielles et neuromusculaires.

Contenu : physiologie du système nerveux de l'homme : système nerveux central (SNC), extensions du SNC et expansions de la moelle épinière. Neurophysiologie du système auditif : compréhension des divers relais situés entre le ganglion spiral dans la cochlée et le cortex auditif, fonctionnement des capteurs de son de l'oreille interne et effet de la stimulation électrique des cellules ciliées, du ganglion spiral et du nerf auditif. Électrophysiologie des cellules nerveuses : cellule nerveuse de base, neurone, transmission chimique de l'information, transmission dendritique et anoxique. Physiologie élémentaire des réseaux nerveux. Application aux prothèses sensorielles (cochléaires, optiques) et neuromusculaires.

Préalables : GEI 210 et GEI 215

GEI 713 3 cr.

Matériaux semiconducteurs et couches

Objectifs: comprendre les bases scientifiques et connaître les éléments de mise en oeuvre des différentes techniques utilisées pour la croissance de couches minces semiconductrices, isolantes et métalliques. Contenu: nucléation des films minces, étapes de croissance, défauts de croissance, films monocristallins, transitions polymorphes, imperfections dans les monocristaux, techniques de haut vide, techniques d'évaporation et de pulvérisation camodique, pyrolyse à pression réduite, pyrolyse à organométalliques, pyrolyse assistée par plasma, dépôts par laser, par faisceaux d'électrons et par faisceaux d'ions.

GEI 714 3 cr.

Dispositifs électroniques sur silicium et matériaux III-V

Objectif : acquérir les connaissances théoriques et pratiques nécessaires à la fabrication de composants électroniques et optoélectro-

niques à haute vitesse à base de silicium et de matériaux III-V.

Contenu: matériaux, technologies et blocs élémentaires: propriétés des matériaux, technologie avancée de fabrication et blocs élémentaires de conception de dispositifs. Dispositifs à effet champ et de potential: MOSFET à canal court, CCD, MESFET, MODFET, HEMT, HBT et dispositifs à mémoire. Dispositifs à effets quantique et photonique: diodes à effet tunnel résonnant, transistors bipolaires à effet tunnel résonnant avec double barrière de base, transistors à superréseau, diodes IMPATT, dispositifs GUNN, diodes émettrices de lumière, laser semiconducteurs, photodiodes p-i-n et photodiodes à avalanche. Application aux circuits intégrés.

GEI 716

ConceptionVLSI en fonction des tests et CMOS analogiques

Objectifs: acquérir les connaissances nécessaires pour inclure des structures de tests dans les circuits intégrés; être capable de concevoir des circuits analogiques en CMOS. Contenu : conception en vue des tests : probabilité de fonctionnement d'un système, coût d'une faute non détectée, nature des défauts, genres de tests, modelage des fautes, testabilité, vecteurs de test, vérification des structures régulières, structures de test, autovérification et extension aux cartes de circuits imprimés. CMOS analogiques : éléments disponibles en CMOS, sous-systèmes de base tels que les commutateurs analogíques, les résistances actives, les miroirs de courant et de tension, les sources de courant et les sources de référence, et application aux comparateurs analogiques et aux amplificateurs opérationnels.

GEO

GEO 101 3 cr.

Éléments de climatologia

Objectif: connaître les lois fondamentales, la base de la formation et de la classification des climats mondiaux

Contenu: le rayonnement solaire, la température, les lois de la climatologie dynamique, la circulation atmosphérique générale, les précipitations, les changements de climat dans le temps et dans l'espace, la classification des climats mondiaux actuels.

GEO 102 3 cr.

Principes de cartographie (3-0-6)

Objectifs: distinguer entre carte fondamentale et thématique; apprendre le processus de rédaction cartographique et les règles de la graphique; réaliser des cartes portant sur divers thèmes.

Contenu: l'histoire de la cartographie. Bases techniques: échelles, systèmes de coodonnées, projections, levés topographiques et restitution photogrammétrique. Rédaction cartographique et modes d'expression: généralisation, sémiologie graphique, variables rétiniennes. Réalisation de cartes thématiques avec l'aide d'un louiciel de dessin.

GEO 113 3 cr.

Milleux naturels

Objectifs : apprendre à décrire les écosystèmes, leurs constituants, leur mode de fonctionnement et leur organisation; comprendre et expliquer les régimes pédogéniques et la morphologie associés aux différents milieux naturals; décrire et comparer la faune, la flore et ses mécanismes d'adaptation selon les milieux naturels

Contenu : les milieux naturels ou les écosystèmes terrestres tels la forêt pluvieuse équatoriale, la forêt tropicale, la savane, le désert, la forêt pluvieuse tempérée, la forêt mixte, la forêt de conifères nordique, la toundra et le milieu montagneux sont traités selon une approche écosystémique. Une description des particularités qui les caractérisent (ex. : localisation, paysage) est fournie. Les circonstances entourant leur origine, leur développement, leur fonctionnement (ex.: facteurs climatiques, pédologiques, de même que les interactions entre les organismes vivants (ex.: rapports biotiques) qui les composent (ex. : faune, flore, humain) font l'objet d'une explication.

GEO 115

Milieux physiques

Objectif : acquérir les notions de base sur les milieux physiques.

Contenu : la formation de la terre et la dérive des continents. La structure interne et superficielle de la terre. Les matériaux constitutifs de l'écorce terrestre et leurs propriétés. L'échelle du temps et les méthodes de datation. Les agents d'érosion et leur rôle sur le modèle de la surface terrestre. Les formes terrestres et leur origine.

GEO 304

3 cr.

3 cr.

Interprétation de cartes et de photos aériennes

Objectif: développer une approche méthodologique en interprétation de carte et en photo-interprétation.

Contenu: les cartes et les photographies aériennes sont les outils de base qui servent à caractériser le paysage d'une région. Les aspects abordés sont: les ensembles topographiques, les types de structures, les types de relief, la géomorphologie dynamique, les types de paysages humanisés, l'aménagement du territoire.

Préalable : GEO 300

GEO 400

Écologie physique des bassins-versants

Objectif.: analyser l'environnement selon une approche systémique basée sur l'écosystème, les bilans énergétiques et les bilans hydriques dans le cadre du bassin-versant. Contenu: notions d'hydrologie et de micro-climatologie appliquées. Comportement thermique et hydrique des sols. Carres phytoécologiques et géopédologiques. Travaux pratiques.

GEO 401 3 cr.

Géopédologie

Objectifs: approfondir les connaissances pédologiques de base et connaître les techniques d'analyse des sols.

Contenu : l'étude d'un sol en tant que milieu dynamique. Les propriétés physiques et chimiques des sols. Les principaux facteurs de formation. Les principes de la classification des sols.

GEO 407

3 cr

Cartographie expérimentale et thématique

Objectif : concevoir et réaliser chaque étape d'un projet de carte thématique.

Contenu: problèmes de compilation, de carte de base, de fond de carte. Application et expérimentation des techniques cartographiques, du matériel et des procédés de reproduction d'une carte couleur. La cartographie de données qualitatives et/ou quantitatives.

Préalable : GEO 102

GEO 408

3 cr.

Aménagement régional

Objectifs: comment aborder l'intervention du géographe sur le terrain, dans un contexte d'aménagement régional; acquérir les outils nécessaires pour bien comprendre la dynamique des régions.

Contenu: types de régions, leurs délimitations, les pôles d'attraction. Méthodes d'anatyse régionale. Réseau des villes, leur hiérarchie et modèles. Méthodes de synthèse régionale. Théorie et modèles du développement régional. Analyse critique de plans d'aménagement régional. La politique québécoise en cette matière.

GEO 410

3 cr.

Utilisation du sol

Objectif: connaître les méthodes de localisation et d'aménagement dans une perspective de planification environnementale. Contenu: application des principes de la planification environnementale à l'utilisation du sol. Méthodes d'évaluation des contraintes, des impacts et des nuisances environnementales. Méthodes d'évaluation des aptitudes du milieu pour des fins de localisation et d'aménagement.

GEO 415

_ .

Climatologie spécialisée et hydrométéorologie

Objectif: approfondir des techniques et méthodes de travail spécifiques à la climatologie et à l'hydrométéorologie.

Contenu: méthodes de construction et d'interprétation de graphiques, cartes, etc. se rapportant à divers éléments climatiques : température, précipitation, vent, etc. Étude du temps et des types de temps, climatologie appliquée à l'agriculture, au tourisme, etc. Les modèles dans l'étude des changements de climat, la question de la couche d'ozone, la loi de Gumbel en hydrométéorologie.

Préalable : GEO 101

GEO 420

3 cr.

Microclimatologie

Objectif : apprendre à mieux comprendre comment se comportent les phénomènes climatiques au niveau du sol.

Contenu: rayonnement solaire et terrestre et bilan thermique à la surface du globe. L'évaporation et l'évapotranspiration potentielle. Problèmes de météorologie forestière, la neige, les gelées, la topoclimatologie.

GEO 422

3 ст.

Climatologie urbaine et pollution de l'air

Objectif: acquént les notions de base de la climatologie appliquée à l'environnement urbain et à la pollution atmosphérique.

Contenu: évolution de la climatologie urbaine, rayonnement, température (flot de chaleur), précipitation, vent. La pollution atmosphérique: définition, les conditions météorologiques de la pollution atmosphérique, le smog sulfureux et photochimique, effets de la pollution atmosphérique sur la santé, la végétation, etc. La pollution atmosphérique au Québec.

GEO 423

3 cr.

Aménagement touristique

Objectif: donner des moyens d'intervenir sur le milieu sans le détruire, avec une approche touchant les espaces à haut potentiel touristique, pour une population en vacances.

Contenu: description du milieu naturel où on assiste à une dégradation genéralisée, autant du milieu terrestre qu'aquatique et atmosphérique. L'aménagement touristique bien connu peut-il être un correctif à l'empoisonnement accéléré de l'univers? Normes d'aménagement associées au domaine récréo-touristique et à la villégiature. Conception et étapes du plan d'aménagement. Études de cas estriens, québécois et étrangers.

GEO 437

3 cr

Géomorphologie dynamique

Objectifs: comprendre la dynamique des processus morphoclimatiques et fluviaux et connaître des techniques d'évaluation des im-

Contenu : les milieux fluviaux : mesure d'écoulement et puissance du cours d'eau, méandres, stabilité des berges et du chenal, rugosité du lit, érosion et sédimentation; rôle des glaces. Évolution des versants, types de versants et stabilité des pentes. Milieux lacustres et palustres, thermodynamique, types de lacs, formes déltaïques, hydrodynamique littorale et placielle.

GEO 440

3 cr.

Hydrologie

Objectifs: acquérir les notions de base sur le cycle de l'eau et connaître les techniques de mesure de l'écoulement des eaux.

Contenu : le cycle hydrologique. L'eau dans l'atmosphère. L'interception des eaux à la surface et stockage dans les dépressions. L'évapotranspiration. Les eaux de surface. Les eaux souterraines. Le bassin-versant. L'eau dans l'écosystème.

GEO 604

3 cr.

Environnements littoraux

Objectif : acquérir les données de base sur l'environnement littoral afin de devenir opérationnel à titre d'expert.

Contenu: notions de zone côtière et terminologie. Notions d'océanographie physique: érosion, transport, sédimentation, géomophologie et sédiments littoraux et marins. Classifications de côtes. Unités physiographiques de côtes. Paléolittoraux et évolution littorale. Littoraux lacustres. Humanisation des côtes.

GEO 605

3 cr.

Aménagement urbain

Objectif: analyser les conditions du développement harmonieux des centres urbains. Contenu: catégories de plans d'urbanisme. Les méthodes d'inventaires et de synthèse. Analyses des conceptions globales. Villes nouvelles et méthodes de rénovation. Analyse critique de plans directeurs et de schémas d'aménagement de secteurs. Le processus décisionnel et l'application des plans d'urbanisme.

GEO 708

3 cr.

Utilisation du sol et environnement

Objectif: se familiariser avec les méthodes et techniques de recherches en utilisation du sol et en évaluation de l'environnement.

Contenu: quatre thèmes: cartographie de l'environnement, méthodes d'évaluation des impacts sur l'environnement, analyse visuelle des paysages et évaluation de l'érosion des sols.

GEO 711 3 cr.

Projet en aménagement

Objectifs: opérationnaliser les connaissances théoriques et pratiques dans le domaine; démontrer la cohésion de la planification avec la politique municipale et les concepts socioéconomiques.

Contenu: le milieu municipal au Québec, étude des lois et règlements touchant l'aménagement des petites villes et le milieu rural (zonage), des caractéristiques d'une municipalité, de ses besoins et des solutions d'aménagement. Travaux concrets dans le milieu.

GEO 717

3 cr.

Climatologie : saisie de données, modélisation

Objectif : développer sa connaissance de la modélisation spatiale des composantes du bilan d'énergie.

Contenu: développement d'un modèle numérique de terrain. Modèlisation spatiale et temporelle de la radiation directe, diffuse et thermique. Modélisation des variations spatiales du vent et des autres variables du microclimat. Projet sur le terrain.

GIN

GIN 200

3 ¢ı

Programmation et exploitation de l'ordinateur

Objectif: apprendre à utiliser différents systèmes informatiques et à programmer diverses applications à l'aide d'un langage de programmation évolué.

Contenu : description et fonctionnement de l'ordinateur. Les environnements d'utilisation et de programmation, les langages de programmation. Éléments de programmation structurée : énoncés structurés, représentations graphiques. Utilisation d'un langage : constantes et variables, énoncés de contrôle et d'affectation, entrée-sorties. Structures de données : structures de données : structures de données : structures de base, chaînes, tebleaux, types structurés. Structure d'un programme, sous-programmes et procédures, méthodes de conception, modularisation.

GNT

GNT 300

Génétique (3-0-6)

Objectifs : connaître et maîtriser les fondements de la génétique; comprendre l'universalité des phénomènes génétiques sur l'ensemble des organismes vivants; se familiariser avec les implications pratiques et éthiques de ces phénomènes (médecine, agriculture, etc.).

Contenu : théorie chromosomique de l'hérédité. Mitose, méiose. Génétique mendélienne: monohybridisme; dihybridisme. Détermination du sexe. Les cartes génétiques. Mutations chromosomiques. Organisation du matériel génétique. Cartographie du génome humain. Les mutations ponctuelles : mécanismes. La génétique biochimique. La complémentation. Le code génétique. La génétique quantitative. Les bases de la génétique des populations. Le cours comporte des séances de résolutions de problèmes et d'utilisation de logiciels interactifs. Certaines notions sont acquises par auto-apprentissage

Préalable : BCL 102

GNT 301

Génétique - Travaux pratiques (0-3-0)

Objectifs : être capable d'appliquer de facon pratique certaines notions importantes vues au cours et de décrire en termes expérimentaux les phénomènes génétiques; comprendre et être en mesure d'utiliser les interrelations entre théorie et pratique en génétique. Contenu : étude de la mitose et de la méiose. étalement de chromosomes humains; ana lyse des tétrades chez un ascomycète; étude génétique du maïs; initiation à la méthode des plages, études de la transformation, de la complémentation et de la recombinaison: étude de la variabilité génétique par les mutations et photoréparation; étude de la pression sélective chez les bactéries.

Concomitante: GNT 300

GNT 302

Génétique (2-2-5)

Objectifs: connaître et maîtriser les fondements de la génétique; comprendre l'universalité des phénomènes génétiques sur l'ensemble des organismes vivants; se familiariser avec les implications pratiques et éthiques de ces phénomènes (médecine, agriculture,

Contenu : théorie chromosomique de l'hérédité. Mitose, méiose. Génétique mendétienne: monohybridisme; dihybridisme. Détermination du sexe. Les cartes génétiques. Mutations chromosomiques. Organisation du matériel génétique. Cartographie du génome humain. Les mutations ponctuelles : mécanismes. La génétique biochimique. La complémentation. Le code génétique. La génétique quantitative. Les bases de la génétique des populations. Le cours comporte des séances de résolutions de problèmes et d'utilisation de logiciels interactifs. Certaines notions sont acquises par auto-apprentissage assisté.

Préalable : BCL 102

GNT 304 2 cr.

Génétique (2-0-4)

3 cr

1 cr.

3 cr.

Objectifs : connaître et maîtriser les fondements de la génétique; comprendre l'universalité des phénomènes génétiques sur l'ensemble des organismes vivants; se familiariser avec les implications pratiques et éthiques de ces phénomènes en médecine, en agriculture, etc.).

Contenu : éléments de génétique classique essentiels à la compréhension de la nature des maladies génétiques et des mécanismes de l'hérédité en général. La matière est structurée autour de concepts spécifiques tels que le mono et le dihybridisme, les gènes dominants et récessifs, les mutations, la détermination du sexe, les aberrations chromosomiques, le crossing-over, la recombinaison, etc. Les éléments de génie génétique passent en revue les différentes techniques de clonage moléculaire et de manipulation de l'ADN ainsi que les informations les plus importantes qu'elles ont livré au cours des deux demières décennies. L'accent est mis sur la puissance des techniques en illustrant notamment comment celles-ci sont utilisées pour cloner les gènes, étudier leur structure et arrangement sur les chromosomes, identifier des mutations et étudier divers phénomènes biologiques fondamentaux.

Préalable : BCL 102

GNT 404

Génie génétique I (1-0-2)

1 cr.

Objectifs : connaître et comprendre les concepts théoriques des manipulations de base in vitro des acides nucléiques en biologie moléculaire et en génie génétique; prendre en charge sa formation dans le domaine du génie génétique.

Contenu : propriétés des enzymes de restriction et autres enzymes utilisés pour manipuler l'ADN et l'ARN. Purification des acides nucléiques. Séparation des acides nucléiques et établissement des cartes de restriction. Vecteurs de clonage et stratégies de clonage.

Préalable : BCL 102

CNT FOA 2 ...

Génie biomoléculaire (2-0-4)

Objectif : acquérir les notions de base relatives à la manipulation génétique des organismes vivants

Contenu : la biosécurité. Vecteurs de clonage. Banques de gènes : construction et criblage. Vecteurs spéciaux. Analyse informatisée des données génétiques. Génie des protéines et de l'ARN. Organismes transgéniques : levure, plantes, animaux.

Préalables: GNT 302, GNT 506 et MCB 504 ou BCL 506

GNT 506 2 cr.

Génle génétique II (2-0-4)

Objectifs : connaître et comprendre les concepts théoriques des techniques avancées utilisées dans la manipulation in vitro des acides nucléiques en biologie moléculaire et en génie génétique; prendre en charge sa formation en génie génétique avancé.

Contenu : transfert et hybridation. Séquençage. Mutagénèse. Synthèse de cDNA. Le PCR. Le LCR. Techniques spécialisées. Le cheminement dans l'utilisation des techniques de biologie moléculaire.

Préalable : GNT 404

GNT 523

2 cr.

Génie génétique - Travaux pratiques

Objectif: se familiariser avec la manipulation d'acides nucléiques en utilisant les techniques de base de la biologie moléculaire et du génie aénétique.

Contenu : réalisation pratique d'un projet de recherche en génie génétique sous la direction d'une professeure ou d'un professeur. Un laboratoire adéquatement équipé est misà la disposition des étudiantes et des étudiants qui travaillent en équipe de deux et qui déterminent leur plan expérimental et leur horaire de façon autonome. Rédaction d'un rapport final sous forme d'article scientifique. Ce cours est réservé exclusivement aux étudiantes et aux étudiants de la concentration biotechnologie.

Préalable : GNT 506

GNT 608

2 ...

Génétique et biologie moléculaire des levures (2-0-4)

Objectifs : connaître divers aspects de la biologie moléculaire des levures Saccharomyces cerevisiae et Schizosaccharomyces pombe, ainsi que leur utilité et les avantages qu'elles offrent à la recherche fondamentale.

Contenu : notions générales sur la biologie de Saccharomyces cerevisiae et de Schizosaccharomyces pombe, vecteurs de levure, stratégies de mutagénèse (approches classiques et par PCR), systèmes de détection d'interactions entre protéines (mono et double hybride). Intégration de sujets spéciaux en transcription génique, analyse de la chromatine et machines spécialisées dans le remodelage de la chromatine. La levure comme modèle d'étude génétique de certaines maladies humaines et du vieillissement.

Préalables: BCM 318 et GNT 302

GNT 625

4 cr.

Initiation à la recherche en génie génétique (0-11-1)

Objectif: perfectionner un cheminement individuel avancé dans un axe de recherche spécialisé en biologie moléculaire.

Contenu : réalisation d'un projet de recherche approfondi en intégrant les connaissances avec l'aide de techniques avancées. Rédaction d'un rapport.

Préalable : avoir obtenu 55 crédits du pro-

gramme

GRH

GRH 111

Aspects humains des organisations

Objectifs: acquérir une connaissance théorique sur les phénomènes à caractère humain dans les organisations, acquérir certaines habiletés d'intervention au sein de groupes de travail; augmenter sa connaissance de soi et de son impact sur les autres.

Contenu : les déterminants du comportement des individus et des groupes dans les organisations. Les traits personnels, les valeurs, les attitudes, la perception et la motivation. Le travail en équipe, les processus de groupes, communication et participation. phénomènes organisationnels, le pouvoir, le leadership, les conflits, le changement et le développement organisationnel.

GRH 221

3 cr.

Gestion du personnel et relations in-

Objectifs: comprendre l'importance de la gestion des ressources humaines et acquérir des connaissances de base sur les principaux programmes élaborés et gérés par les spécialistes en ce domaine; acquérir les notions essentielles sur la structure et le fonctionnement de notre système de relations de travail.

Contenu: historique, environnement et structure de la gestion des ressources humaines. Planification des effectifs. Recrutement et sélection du personnel. Évaluation du rendement. Formation des cadres et des employés. Gestion de la rémunération. Senté et sécunité au travail. Cadre juridique des relations du travail. Organismes patronaux et syndicaux. Négociation et administration des conventions collectives. Arbitrage des griefs.

GRH 332

3 cr.

Planification et sélection

Objectifs : approfondir les concepts de planification des ressources humaines dans ses divers aspects; connaître et appliquer de façon concrète plusieurs techniques reliées à l'embauche du personnel.

Contenu: planification des ressources humaines. Prévision de l'offre et de la demande de travail. Planification des carrières. Vision globale du processus d'embauche. Recrutement. Formulaires d'emploi. Vérification des références. Utilisation des tests. Théorie et pratique de l'entrevue de sélection. Théorie et pratique de l'appréciation par simulation. Impact de la Charte des Droits sur le processus d'embauche.

Préalable : GRH 221

HTI

HTL 302

3 cr.

Histocytologie (2-3-4)

Objectifs: acquérir la connaissance de la structure microscopique (telle que vue en microscopie optique et électronique) des tissus et des organes et développer la capacité de relier la structure à la fonction.

Contenu: étude microscopique de la structure des quatre principaux tissus (épithélial, conjonctif, musculaire et nerveux). Étude de l'organisation de ces tissus dans les différents organes chez les mammifères. Initiation aux techniques de préparation des tissus pour l'observation.

Préalable : BCL 102

IFT

IFT 157

3 cr.

Traitement numérique et symbolique de l'information (3-1-5)

Objectifs: être en mesure d'utiliser un langage de quatrième génération et un logiciel de calcul symbolique. Ce cours prépare les étudiantes et les étudiants à se servir des ordinateurs comme outils de programmation scientifique dans leurs cours de mathématiques ainsi que dans leurs stages.

Contenu: le langage SAS sous le système d'exploitation MUSIC: utilisation pour la gestion des fichiers; création, fusion, concaténation, tri multiple; création, édition et impression de rapports; introduction aux macroinstructions. SAS sous le système MS-DOS: traitement interactif de tableaux de données dans le logiciel IML de SAS. Le langage de calcul symbolique MAPLE: arithmétique exacte sur les entiers et les rationnels; manipulation de polynômes, de fonctions, de séries, d'ensembles, de listes, de tableaux; présentation de quelques librairies mathématiques.

IFT 159

3 cr.

3 cr.

3 cr.

Analyse et programmation (3-1-5)

Objectifs: savoir analyser un problème; avoir un haut degré d'exigence quant à la qualité des programmes; pouvoir développer systématiquement des programmes de bonne qualité, dans le cadre de la programmation procédurale séquentielle.

Contenu : critères de qualité et généralités : identification, assimilation et intégration des critères de qualité des programmes, notamment : la conformité, la fiabilité et la modifia-bilité. Analyse des problèmes : identification et structuration des données, identification de la loi de la fonction (données - > résultats), production de la liste des principaux modules d'un algorithme implantant cette loi. Simplification de problèmes, modèles, réduction, enrichissement, développement par morceaux, modularisation et encapsulation. Modèles d'exécution. Exemples d'analyse-programmation : applications numériques et non numériques. Interprétation de programmes. Introduction aux types abstraits de données. Récursivité. Compléments et divers.

(FT 178

Traitement de données (3-1-5)

Objectifs: apprendre à reconnaître et à résoudre les problèmes d'organisation et de traitement de données; se familiariser avec les techniques d'analyse et de programmation à l'aide d'un langage procédural.

Contenu: concepts de base. Principes de base du fonctionnement d'un ordinateur et de ses périphériques. Les logiciels; les logiciels d'application, les logiciels d'exploitation, les langages de commande et les utilitaires. Les techniques de programmation structurée; la conception, le codage, les tests et la documentation des programmes. Étude d'un langage procédural (COBOL); application interactive, manipulation des caractères et des tableaux. Les fichiers; supports, organisation; traitement (fichiers séquentiels, relatifs, indexés, etc).

IFT 249

Programmation interne des ordinateurs (3-1-5)

Objectifs: comprendre, du point de vue du programmeur, l'architecture d'un ordinateur, les systèmes de numération, les types élémentaires de données et les structures de contrôle; savoir effectuer une programmation-système.

Contenu: introduction à l'architecture des ordinateurs. Adressage. Format des instructions machine. Représentation des données. Étude d'un langage d'assemblage. Technique de mise au point de programmes. Arithmétique entière. Arithmétique en virgule flottante. Manipulation de bits. Sous-programmes, macros.

Antérieure : IFT 159

IFT 286 3 cr.

Laboratoire de bases de données (3-0-6)

Objectifs: appliquer et connaître de façon approfondie les concepts de traitement de données; savoir exploiter une base de données (BD).

Contenu: organisation de fichiers: principe de fonctionnement et domaines d'application (séquentiel, indexé séquentiel, relatif, ...). Aperçu des différents types de systèmes de gestion de base de données (SGBD) (hiérarchique, orienté objet, réseau, relationnel, ...). Introduction aux différents types de langage d'un SGBD. Langage de manipulation de données et navigation dans une BD. Aperçu des environnements client-serveur.

Antérieure : IFT 178

IFT 311 · 3 cr.

informatique théorique (3-1-5)

Objectif: s'initier aux fondements théoriques de l'informatique, en particulier la théorie des automates, aux modèles formels des langages de programmation

ges de programmation.
Contenu: automates finis déterministes et non déterministes. Propriétés des automates finis. Langages régulières et expressions régulières. Grammaire hors-contexte et automates à pile de mémoire. Propriétés des langages hors-contexte. Introduction aux machines de Turing.

Préalable : MAT 121 ou MAT 235

IFT 319 3 Systèmes de programmation (3-1-5)

3 cr

Objectifs: s'initier aux concepts généraux des systèmes d'exploitation; comprendre les relations existant entre le système d'exploitation et l'architecture de l'ordinateur; étudier, plus spécifiquement, les modèles de système d'exploitation dépendant de l'architecture de l'ordinateur.

Contenu: rappels: langages machine et d'assemblage. Assembleur. Étude d'un macroassembleur (macroinstructions, assemblage conditionnel). Chargeur absolu et translatable. Éditeur de liens. Programmation d'entrées-sorties: série, parallèle et DMA. Pilotes de périphériques. Interruptions: mécanisme, priorité, masquage, traitement. Mémoire virtuelle: mécanisme et gestion. Noyau de système d'exploitation. Moniteur d'enchaînement des travaix.

Antérieures : IFT 159 et IFT 249

1FT 324 3 cr.

Génie logiciei (3-1-5)

Objectifs: connaître les critères de qualité du logiciel et être en mesure d'utiliser une gamme d'outils pour analyser, concevoir et développer des systèmes satisfaisant ces critères.

Contenu: définition et objectifs. Modèles de cycle de vie. Éléments d'un environnement de développement: méthodes, notations et outils logiciels. Méthodes d'analyse et de conception: concepts, cohésion, couplage. Méthodes basées sur les flux ou les structures de données. Méthodes orientées objets. Techniques de validation et vérification. Essais. Implantation et maintenance. Prospective en génie logiciel.

Préalable : avoir obtenu 24 crédits du programme

IET 339

3 ...

Structures de données (3-1-5)

Objectifs : formaliser les structures de données; comparer et choisir les meilleures implantations des structures en fonction du problème à traiter; mettre en pratique les notions de module et de type abstrait de données en réalisant un projet.

Contenu : axiomatisation des structures de données classiques (liste, ensemble, arbre, graphe). Mise en évidence des structures de données sous-jacentes à un problème. Étude comparative d'algorithmes (ordre de complexité et d'espace). Choix d'implantation, de représentation de structures. Listes généralisées et applications. Ramasse-miettes, compactage. Arbres exotiques (AVL, balancement, rééquilibrage). Graphes (forêts, arbre générateur).

Préalable : IFT 159

IFT 359

3 cr.

Programmation fonctionnelle (3-1-5)

Objectif: formaliser les notions d'abstraction procédurale et d'abstraction de données dans le cadre de la programmation fonctionnelle. Contenu : qualité, modularité, conception fonctionnelle. Processus récursifs et itératifs. Obiets atomiques, listes, sélection, abstraction d'ordre supérieur. Exemples faisant appel à des algorithmes spécifiques et aux structures de données associées. Insistance sur la qualité de la solution. Introduction à la preuve de programme.

Antérieure : IFT 159

JET 379

3 cr.

Principes des systèmes d'exploitation (3-1-5)

Objectifs : connaître et comprendre les principes généraux, aussi bien de bas que de haut niveau, des systèmes d'exploitation: comprendre les relations existant entre le système d'exploitation et la machine et entre le système d'exploitation et l'usager.

Contenu : entrées-sorties de bas niveau : série, parallèle, DMA. Gestion de l'espace secondaire. Systèmes de fichiers, Interruptions. Gestion des processus et de l'UCT. Gestion mémoire physique et logique. Protection mémoire. Mémoire virtuelle. Concepts d'interblocage et de parallélisme.

Antérieures : IFT 159 et IFT 249

IFT 424

3 cr.

Laboratoire de génie logiciel (1-4-4)

Objectif: être capable d'organiser une équipe de projet informatique et de produire efficacement un bien livrable de haute qualité demandé par un utilisateur typique.

Contenu : organisation d'une équipe de projet informatique. Planification et contrôle du travail. Analyse de besoins. Révision structurée. Outils et normes de documentation. Réalisation, en équipe, d'un dossier d'analyse et de conception sur un projet soumis par la professeure ou le professeur.

Préalable : IFT 324

IFT 428

Infographie (3-0-6)

Objectifs : comprendre les concepts de base de l'infographie tridimensionnelle; être apte à réaliser un noyau graphique tridimensionnel hiérarchisé; être capable, à l'aide de ce noyau, de réaliser une application simple. Contenu: utilisation d'un logiciel graphique: paramètres de vision tridimensionnelle (description de la caméra virtuelle); construction de scène hiérarchique; transformations géométriques de modèles; interaction graphique et appareils logiques d'entrée-sortie; appareils graphiques. Implantation d'un logiciel graphique : implantation des transformations géométriques; implantation de la caméra virtuelle; algorithmes de découpage: implantation d'outils d'interaction graphique. Techniques de quadrillage : conversion d'objets continus (lignes, courbes, surfaces) dans un milieu discret (quadrillage de pixels); notions d'antialiasing; technique de demi-ton.

Préalables: IFT 339, MAT 143 ou MAT 182

IFT 438 Algorithmique (3-1-5)

3 cr

3 cr

Objectif : aborder l'étude systématique et la mise en oeuvre des principales techniques de développement et d'optimisation menant à la conception d'algorithmes efficaces.

Contenu: outils mathématiques d'évaluation et de modélisation du calcul et de son optimisation. Notation asymptotique. Analyse d'algorithmes a priori. Techniques de conception : récursion, « diviser pour régner », balancement des sous-problèmes, programmation dynamique et heuristique.

Préalable : IFT 339

IFT 448 3 cr.

Organisation d'un ordinateur (3-2-4)

Objectifs : comprendre le fonctionnement interne d'un processeur et l'implantation câblée et microprogrammée d'un langage machine; connaître différentes implantations d'une unité centrale de traitement.

Contenu : algèbre de Boole appliquée aux circuits logiques. Circuits combinatoires trouvés dans les ordinateurs. Bascules, registres et autres circuits séquentiels. Cycles d'interprétation et d'exécution d'une instruction machine. Contrôle câblé et microprogrammé, implantation d'un langage machine, microprogrammation. Unité de traitement. Introduction à la tolérance aux fautes et aux architectures parallèles.

Préalable : IFT 249 Antérieure : MAT 113

IFT 451

3 cr.

Théorie des langages de programmation (3-1-5)

Objectif: s'initier aux principaux outils de description et d'analyse des langages de programmation. Afin d'en mesurer l'acuité, l'efficacité et l'universalité, leurs fondements formels sont présentés parallèlement.

Contenu : utilisation des expressions régulières et des grammaires formelles pour la description lexicale et syntaxique. Construction des analyseurs lexicaux (ad hoc ou par automates). Construction des analyseurs syntaxi-ques ascendants (SLR, LALR, LR) et descendants (LL). Présentation de systèmes d'écriture automatique d'analyseurs lexicaux et syntaxiques. Aperçu sommaire des méthodes de spécification et d'analyse sémantique.

Antérieure : IFT 311

IET 459

3 ...

Concepts de langages de programmation (3-0-6)

Objectifs : connaître les concepts théoriques et pratiques des langages de programmation; apprendre à concevoir des programmes dans différents types de langages de programmation; s'initier aux langages de spécification et à la programmation automatique.

Contenu : éléments d'un langage de programmation, Programmation procedurale. Programmation fonctionnelle. Programmation orientée objets : types abstraits de données, objets, classes, classes génériques, héritage. Programmation logique : clauses, unification, instantiation, contrôle. Programmation parallèle : processus, synchronisation, communication. Langages de spécification basés sur la logique du premier ordre et sur la théorie des ensembles. Programmation automati-

Antérieure : IFT 359

IET 480

3 cr

Circuits logiques (3-1-5)

Objectifs : connaître les aspects théoriques et pratiques de l'analyse de la synthèse et de la matérialisation de circuits logiques qu'on trouve dans les ordinateurs; s'initier à la technologie des circuits intégrés, apprendre à matérialiser des circuits logiques combinatoires et séquentiels en utilisant des composants intégrés.

Contenu : systèmes de numération et codes. Algèbre de Boole appliquée aux circuits logiques. Analyse et synthèse de circuits combinatoires. Circuits intégrés. Analyse et synthèse de circuits séquentiels. Travaux pratiques en laboratoire.

Préalable : IFT 448

IFT 486 Bases de données (3-0-6)

3 cr.

Objectifs: connaître et comprendre l'architecture d'un système de gestion de bases de données (BD); savoir développer une BD. Contenu : architecture d'un système de ges-tion de bases de données (SGBD). Analyse, conception et implantation des BD. Modélisation conceptuelle, logique et physique (en-tité-association, hiérarchique, infologique, orienté-objet, sémantique, relationnel, réseau, ...). Algèbre et calcul relationnel. Normalisation et formes normales. Langage de description, d'implantation et de manipulation de données dans une BD. Administration des données (concurrence, dictionnaire, intégrité, recouvrement, répartition, sécurité, ...) Préalables : IFT 278 ou IFT 286 et IFT 339

IFT 514

Gestion de systèmes informatiques (3-0-6)

Objectifs : gérer un projet de développement informatique; définir, mesurer et améliorer des processus logiciels; gérer la qualité des produits logiciels.

Contenu: processus logiciel. Planification, suivi et contrôle de projet. Mesure et estimation de la taille du logiciel. Estimation de l'effort et des échéanciers. Mesures de processus et de produits. Revues de produits. Vérification, mesures de qualité, gestion de la qualité du logiciel. Normes de qualité. Amélioration de processus logiciel.

Préalable : IFT 339

IFT 518

3 ...

Interfaces et multimédia (3-0-6)

Objectifs: connaître et comprendre les concepts de base d'ergonomie du logiciel et de l'interaction personne-machine, ainsi que les principes de base de la conception d'une interface; sevoir concevoir et implanter des interfaces graphiques; s'initier aux différents concepts multimédia; savoir développer une application multimédia.

Contenu : ergonomie du logiciel et utilisabilité. Principes de base de conception d'une interface : analyse des tâches, facteurs humains, présentation et interaction. Concepts et fonctionnalités des interfaces graphiques. Composantes d'une interface : le bureau de travail, les fenêtres, les boîtes de contrôle et de dialogue et les menus. Le modèle MVC (modèle-vue-contrôleur). Gestionnaire de système de fenêtrage clients-serveurs (X). Programmation par événements et visuelle. Outils de génération et librairie spécialisée. Concepts et utilisation du multimédia dans les interfaces. Les standards (JPEG, MPEG, ...). Production et stockage de documents multimédia. Langage et outils de représentation de documents multimédia.

Préalable : avoir obtenu 36 crédits du programme

IFT 518

Systèmes d'exploitation I (3-0-8)

Objectifs: approfondir les concepts déjà énoncés dans IFT 319, généraliser ces concepts et les appliquer à des systèmes de plus grande envergure. Plusieurs types de systèmes d'exploitation seront considérés.

Contenu : structure d'un système d'exploitation. Services d'un système d'exploitation. Système de fichiers. Gestion des accès disques. Gestion des processus et de l'U.C.T. Gestion de la mémoire. Mémoire virtuelle. Interblocage : prévention et détection. Expérimentation des concepts sur des systèmes d'exploitation réels.

Antérieure : IFT 319

IFT 524

2 --

Systèmes d'information dans les entreprises (3-0-6)

Objectif: analyser le besoin global d'information d'une organisation ainsi que le rôle du système de gestion comme support à la prise de décision et planifier la mise en œuvre d'un tel système.

Contenu: structure d'un système d'information; système d'information pour exécutif. Planification et implantation d'un système d'information. Plan directeur, analyses de risques, étude de faisabilité, appel d'offres et proposition. Gemme d'applications informatiques. Centralisation vs décentralisation des données et des traitements. Sécurité et confidentialité. Gestion des opérations et performance du service informatique.

Préalable : avoir obtenu 48 crédits du programme

IFT 528

Synthèse d'images (3-0-6)

Objectifs: avoir une connaissance élémentaire des techniques de synthèse d'images réalistes; réaliser un projet de synthèse d'image dans le but d'approfondir une ou plusieurs de ces techniques.

Contenu: courbes et surfaces: techniques de Bézier, approximation par les B-splines. Objets infeguliers: fractales. Solides: opérateurs d'Euler; géométrie constructive solide. Effets d'optique: modèle simple de la lumière; dequation de la lumière. Affichage efficace d'objets complexes: techniques de différences; techniques de subdivision; lissage de couleurs. Simulation d'effets d'optique: algorithme de rayon, notions de textures.

Antérieure : IFT 428

IFT B39

Analyse d'images (3-0-6)

Objectifs: maîtriser les outils fondamentaux à l'analyse des images; concevoir et implanter des solutions aux différents problèmes qui se posent, depuis l'acquisition d'une image jusqu'à son interprétation et réaliser une application simple.

Contenu: systèmes d'acquisition des images, physique de la formation des images, échantillonnage, quantification, transformées, filtrage, convolution, corrélation, restauration, rehaussement, contour, région, texture, représentation, classification, reconnaissance et applications.

Antérieures : IFT 428 et MAT 233

IFT 548 3 cr.

Infographie appliquée (3-0-6)

Objectifs: pouvoir utiliser les outils de base de l'infographie tridimensionnelle; réaliser un noyau limité permettant d'approfondir la notion de transformations géométriques; à l'aide de ce noyau, implanter une application granique.

Contenu: utilisation élémentaire d'un logiciel graphique: transformations de vision, objets hiérarchiques, transformations géométriques de modèles, interaction graphique, matériel graphique. Aperçu de l'implantation d'un logiciel graphique: implantation de transformations géométriques; aperçu du sélecteur graphique. Modèlisation d'objets complexes: irréguliers, solides. Affichage réaliste: la couleur; algorithmes de faces cachées; rudiments des phénomènes optiques.

Préalables : IFT 339 et MAT 143 ou MAT 182

IFT 578 3 cr.

Processeurs de langages (3-0-6)

Objectif: étudier les langages de programmation dans l'optique de la construction d'outils d'environnement de programmation tels que: compilateur, éditeur de langage, mesureurs et résumeurs de programmes, profileurs, normalisateurs, autres transducteurs. historiens.

Contenu: organisation générale d'un compilateur. Analyse syntaxique: génération d'analyseurs lexicaux; revue d'analyse syntaxique; compléments (LL, LR, LALR); codes intermédiaires et autres processeurs de langages. Analyse sémantique: la table des symboles: structure, contenu, traitement; l'allocation d'adresses et l'organisation de l'espace objet; actions sémantiques de base: expressions, instructions; actions sémantiques de

contrôle; actions sémantiques pour les tebleaux, appels et structures. Divers : introduction à la gestion des erreurs, à l'optimisation et à la génération du code objet.

Antérieure : IFT 451

3 cr

3 00

IFT 586 3 cr.

Télématique (3-0-8)

Objectifs: se familiariser avec la terminologie et les différentes techniques de communication; comprendre et maîtriser les différents protocoles de communication de bas niveau.

Contenu: présentation des concepts de réseau, d'architecture et de protocoles. Modèle de référence OSI de L'ISO. Niveau physique: transmission et codage des données, multiplexage et détection des erreurs. Niveau ligne: contrôle du flux et des erreurs. Niveau réseau: commutation et routage. Architecture des réseaux locaux. Protocoles d'accès aux réseaux. Protocoles du niveau transport.

Préalable : avoir obtenu 48 crédits du programme

IFT 592 3 cr

Projet d'informatique I (0-0-9)

Objectifs: développer le goût de la recherche et l'aptitude à communiquer, démontrer se capacité de réaliser un projet informatique et de le présenter sous une forme écrite et, éventuellement, orale; développer l'autonomie d'apprentissage.

Contenu: projet choisi en fonction des objectifs précités et réalisé sous la direction d'une professeure ou d'un professeur du département et le ces échéant en équipe.

partement et le cas échéant en équipe. Préalable : avoir obtenu 48 crédits du programme

IFT 598 . 3 cr.

Simulation de systèmes (3-0-6)

Objectifs: se familiariser avec les concepts de systèmes et de modèles et connaître les approches classiques utilisées dans la modèlisation d'un système; démontrer sa maîtrise du contenu du cours en réalisant un projet de simulation spécifique.

Contenu: étapes d'une simulation. Étéments de probabilité et de statistiques. Méthodes de Monte Carlo, survol de leurs applications. Générations de variables aléatoires. Processus poissonniens. Le paysage des langages de simulation: analyse des familles et tendances actuelles. Les langages à scénarios, les langages à événements discrets, les langages continus, les langages mixtes. Survol de SIMULA et de SIMSCRIPT. Étude détaillée de GPSS, CSMP et DYNAMO.

Préalable: STT 279 ou STT 319 ou STT 418

IFT 614 3 cr.

Contrôle et vérification des systèmes informatiques (3-0-6)

Objectifs: acquérir une connaissance de base et être en mesure d'appliquer diverses normes de contrôle et de vénification des systèmes informatiques.

Contenu: notions de contrôle, planification des contrôles, contrôles sur les structures, les changements, les opérations, le traitement des données, la documentation, l'implantation. Notions de vérification; techniques de vérification, vérification d'un centre informatique, d'un système en opération ou en

développement, vérification des contrôles de gestion. Application des normes

Préalable : avoir obtenu 36 crédits du programme

IFT 615

3 cr.

Intelligence artificielle (3-0-6)

Objectifs : se familiariser avec les fondements de l'intelligence artificielle; apprendre à reconnaître les possibilités et les limites des techniques généralement utilisées dans ce domaine.

Contenu : concepts et problèmes rencontrés en intelligence artificielle. Description, modélisation et réduction des problèmes. Représentation. Méthodes de recherche heuristiques. Étude de systèmes illustrant les principes de base. Techniques utilisées en reconnaissance des formes, en reconnaissance automatique de la parole et dans les systèmes de compréhension orale. Applications au choix : preuve automatique de théorèmes, contrôle automatique de robots, systèmes de dialogues en langue naturelle, systèmes experts, opération de chaînes de montage, jeux, applications en médecine, en architecture, en psychologie et en sciences.

Préalable : avoir obtenu 48 crédits du programme

IFT 618

Performance des systèmes informatiques (3-0-6)

Objectifs: s'initier aux techniques analytiques de modélisation: être capable d'évaluer les performances de systèmes informatiques; comprendre les limites des méthodes exactes

Contenu : étude et révision des files d'attente à un seul serveur. Réseau ouvert et fermé. Réseau à forme produit : modèle de Jackson, théorème de BCMP. Solutions algorithmiques de réseau à forme produit : algorithme de convolution, méthode par valeur moyenne, méthodes approximatives. Applications : modèles à serveur central, étude des caractéristiques des ordinateurs à mémoire virtuelle, temps de réponse des réseaux téléinformatiques, performance des réseaux d'ordinateurs.

Préalable: STT 379 ou STT 418

IFT 619

Flabilité et sûreté des systèmes (3-0-6)

Objectif: connaître et comprendre les concepts et les techniques d'implantation des systèmes informatiques (matériel et logiciel) sûrs et fiables

Contenu : étude des concepts et modèles de base, problème de concordance, sûreté de fonctionnement, réplication, résiliation, détection des anomalies de fonctionnement, techniques de recouvrement, algorithmes de vote, tolérance aux fautes, conception de systèmes sûrs et fiables.

Préalable : avoir obtenu 48 crédits du programme

IFT 628

Systèmes d'exploitation II (3-0-6)

Objectifs: approfondir les concepts associés aux systèmes d'exploitation; comprendre et utiliser les outils modernes de conception et l'évaluation des systèmes d'exploitation.

Contenu: programmation parallèle: processus concurrents, hiérarchie, sémaphores et mécanismes évolués de traitement de la concurrence. Fiabilité des systèmes d'exploitation : reprise avant et arrière, retour à l'exécution normale. Évaluation de performance : concepts, métriques et outils de mesure, détection des zones d'étranglement.

Préalable: IFT 379 ou IFT 518

IFT 631

Objectifs: s'initier aux principales questions soulevées par la théorie de la calculabilité, en particulier par l'étude de problèmes décida-

Calculabilité et décidabilité (3-0-6)

bles et indécidables; étudier les liens qui existent entre les concepts destinés à formaliser le concept de calculabilité effective.

Contenu : logique propositionnelle et algèbre de Boole. Complétude et décidabilité du calcul propositionnel. Les théories indécidables et leurs modèles. Fonctions récursives, machines de Turing, algorithmes de Markov. Thèse de Church. Instruments théoriques de l'informatique : automates, langages formels, réseaux de Pétri

Préalable : IFT 311

IFT 648 3 cr.

Objectifs: comprendre les descriptions et les spécifications d'ordinateurs fournies par les manufacturiers; être en mesure d'évaluer les ordinateurs et de contribuer au choix d'un

Architectures d'ordinateurs (3-0-6)

ordinateur en fonction d'une application donnée.

Contenu : fondements de l'architecture des ordinateurs. Évaluation de la performance. Ordinateurs RISC et CISC. Pipelines. Unités vectorielles. Hiérarchie de la mémoire. Systèmes d'En/S. Architectures parallèles et massivement parallèles. Tolérance aux fau-tes. Démarche à suivre pour choisir un ordinateur en fonction d'une application donnée.

Préalable : IFT 448

IFT 658 3 cr.

Algorithmes parallèles (3-0-6)

Objectifs: se familiariser avec les principaux résultats et acquérir des notions pratiques concernant l'implantation d'algorithmes parallèles sur des ordinateurs matriciels, des multiprocesseurs et des multiordinateurs.

Contenu : rappel sur les architectures parallèles et massivement parallèles. Méthodes de conception d'algorithmes parallèles. Algorithmes parallèles pour résoudre, par exemple, des problèmes de tri, d'accès à l'information, de calculs numériques, de graphes, de programmation logique. Traitement vec-

Préalable : avoir obtenu 48 crédits du proaramme

IFT 689 3 cr.

Systèmes répartis (3-0-6)

Objectif : être capable de connaître différents systèmes répartis ainsi que les problèmes que soulève l'implantation de tels systèmes. Contenu: introduction aux systèmes répartis. Architecture de systèmes répartis. Méthodes de synchronisation : horloges logiques et physiques, jetons, séquenceurs... Principes de gestion de bases de données réparties : copies multiples et transactions. Systèmes de transfert de fichiers et de courrier

électronique. Cryptographie. Fiabilité des

systèmes répartis : élections et reconfigura-

tion, objets K-resistants, etc.

Antérieure : IFT 585

IFT 692 3 cr.

Projet d'informatique II (0-0-9)

Objectifs : développer le goût de la recherche et l'aptitude à communiquer, démontrer sa capacité de réaliser un projet informatique et de le présenter sous une forme écrite et, éventuellement, orale; développer l'autonomie d'apprentissage.

Contenu : projet choisi en fonction des obiectifs précités et réalisé sous la direction d'une professeure ou d'un professeur du département et le cas échéant en équipe.

Préalable : IFT 592

IFT 716 3 cr.

Interfaces personne-machine (3-0-6)

Objectifs : connaître la problématique et l'importance des interfaces dans les applications; concevoir, analyser et construire une interface de qualité appropriée.

Contenu : architecture générale des interfaces. Modèles cognitifs pour l'interaction personne-machine. Modélisation des utilisateurs : les systèmes de traitement d'information, les processus de communication basés sur des modèles, les processus de communication basés sur les connaissances. Processus de développement d'une interface ; analyse, spécification et implantation. Évaluation : critères et qualités des interfaces. Outils pour le développement d'une interface. Intégration des informations multisources : graphiques, à deux et à trois dimensions, audio, vidéo. Les normes dans les interfaces personne-machine.

Préalable : IFT 615

IFT 719 3 cr.

Processus de génie logiciel (3-0-6)

Objectifs : effectuer l'analyse du processus même de développement des logiciels; utiliser et appliquer les techniques de réingénierie et de réutilisation.

Contenu : bref aperçu sur les approches et les normes du développement de logiciels. Étude de quelques cycles de base de développement de logiciels par le paradigme de décision/justification. Illustration sur des exemples. Approches de réingénierie et de rétroingénierie des logiciels : limites et perspectives. Techniques de réutilisation des logiciels. Environnements et ateliers de développement assisté des logiciels. Études de

Préalable : IFT 324

IFT 720 3 cr.

Outils fondamentaux pour le génie logiciel (3-0-6)

Objectifs : connaître de manière approfondie les principaux outils mathématiques servant en génie logiciel, afin de pouvoir résoudre les problèmes théoriques et pratiques posés par les progrès de cette discipline; identifier les concepts classiques utilisés dans la modélisation des systèmes; analyser et évaluer les comportements des systèmes complexes. Contenu : étude approfondie des outils de modélisation. Théorie des modèles. Modèles de déduction naturelle. Logiques d'ordre supérieur et logiques typées. Modèles avan-cés de simulation. Étude approfondie des outils d'analyse. Preuves formelles. Techniques de réécriture. Schémas avancés de simulation et flux de contrôle. Approches d'évaluation et d'interprétation des simulations.

Préalable : IFT 598

IFT 721

--

Métriques des logiciels (3-0-6)

Objectifs : décrire, classer et comparer les mesures et les métriques classiques; choisir et expliquer en ses propres termes les articles de recherches récents les plus significatifs publiés dans le domaine des métriques de logiciel; justifier et planifier l'utilisation des métriques et pouvoir décrire les principaux problèmes potentiels relies à leur exploitation. Contenu : métriques dans le cycle de vie des systèmes informatiques; métriques de développement, de conception et d'analyse. Métriques et modèles de fiabilité. Cadre expérimental. Micro et macromodèles. Évaluation de modèles. Automatisation et exploitation des mesures ; estimation et contrôle des projets, assurance de qualité, mesure de la productivité, conception à base de métriques.

Préalable : IFT 324

IFT 722

3 cr.

Génie logiciel (3-0-6)

Objectifs : se familiariser avec les problèmes contemporains du génie logiciel; connaître et comprendre les concepts et techniques propres au génie logiciel; approfondir un langage de spécification et une méthode de conception; s'initier à des outils logiciels en réalisant un projet de conception de systèmes.

Contenu: environnement de développement. Méthodes de modélisation et de spécification de systèmes. Validation et vérification de spécifications. Outils logiciels. Programmation automatique et outils logiciels à base de connaissances. Méthodes de conception. Comparaison de méthodes. Prototypage. Réutilisation du logiciel.

IFT 723

3 cr.

Bases de données (3-0-6)

Objectifs : reconnaître les activités et les problèmes de la modélisation des données dans le contexte des bases de données; reconnaître les problèmes de recherche fondamentaux dans le domaine des bases de données. Contenu : analyse de différents modèles de données (réseau, relationnel, sémantique, etc.). Concepts fondamentaux : structures, contraintes, opérations. Conception des bases de données centralisées et distribuées. Étapes de la conception, modélisation conceptuelle, implantation, administration des bases de données (DBA). Répartition et allocation des données, concurrence, intégrité et recouvrement. Orientations futures : les machines BD (Database Machines), les systèmes de gestion des systèmes de bases de données intelligentes, les bases de données orientées objets telles que Object Store, O2 et Versant, ainsi que les bases de données déductives.

Préalable : IFT 486 ou l'équivalent

IFT 724

3 ~~

Systèmes à base de connaissances (3-0-6)

Objectifs: connaître de façon approfondie les techniques de raisonnement, de représentation et d'acquisition des connaîsances; connaître et utiliser le processus de développement des systèmes à base de connaissances.

Contenu: typologie des connaissances et des reisonnements. Représentation de connaissances par les règles, réseaux sémantiques, frames, réseaux bayesiens. Raisonnements non monotoniques et probabilistes. Logique floue et modèles connexionnistes. Apprentissage à partir des exemples (par induction), par déduction et par analogie. Planification. Architecture des systèmes à base de connaissances. Processus de développement d'un système à base de connaissances. Structures de contrôle. Algorithmes d'appariements. Outis de développement des systèmes à base de connaissances.

Préalable : IFT 615 ou l'équivalent

IFT 725

3 cr.

Réseaux neuronaux (3-0-6)

Objectifs: maîtriser les techniques générales de réseaux neuronaux, les appliquer à la résolution de problèmes reliés à l'apprentissage, la classification et la prise de décisions; développer des applications réelles.

Contenu: concepts de base, neurones biologiques et artificiels, apprentissage supervisé et apprentissage non supervisé, différents modèles de réseaux neuronaux pour la classification, l'association, l'optimisation et l'auto-organisation, modélisation avec les réseaux neuronaux, réseaux neuronaux à base de connaissances, implantation des réseaux neuronaux, applications.

IFT 729

3 cr.

Conception de systèmes temps réel (3-0-6)

Objectifs: connaître et identifier les problèmes inhérents au développement de systèmes temps réel; connaître et appliquer le traitement du temps au niveau des systèmes informatiques; spécifier, concevoir, programmer et vérifier des systèmes temps réel.

Contenu : types de systèmes temps réel. Représentation du temps, contraintes de temps, horloge, synchronisation d'horloges. Formalismes utilisés dans la spécification de systèmes temps réel : machines à états, statecharts, réseaux de Petri. Approche axiomatique de spécification de contraintes terrporelles. Architecture des systèmes temps réel. Plates-formes matérielles. Modèles utilisés dans la conception de systèmes temps réel : modèles basés sur les événements. modèles basés sur les graphes, modèles des tâches, modèles des processus, modèles du contrôle. Méthodes formelles de conception de systèmes temps réel. Langages de programmation de systèmes temps réel : Ada, Estrel, Real-time Euclid. Vérification et validation de systèmes temps réel.

IFT 734

3 cr.

Méthodes formelles de spécification (3-0-6)

Objectifs: connaître et utiliser les notations formelles; line et comprendre des spécifications formelles; choisir entre différentes méthodes formelles de spécification; utiliser des méthodes formelles pour spécifier des systèmes et analyser les propriétés d'un système.

Contenu: bref rappel des outils mathématiques utilisés dans la spécification formelle des systèmes: théorie des ensembles, logique des prédicats du premier ordre, logiques temporelles, réseaux de Petri. Langages formels de spécification de systèmes: CSP, VDM, Z, Telos, Larch, OBJ. Modélisation et spécification formelle des systèmes. Études de cas et puissance d'expression. Transformation de spécifications. Analyse des propriétés des spécifications.

Préalable : IFT 324

IFT 737

3 cr.

Conception des systèmes parallèles et distribués (3-0-6)

Objectifs: connaître et appliquer les concepts des systèmes distribués; identifier et évaluer les problèmes qu'entraîne leur implantation; comprendre et maîtriser diverses implantations de ces concepts.

Contenu: présentation des concepts et architectures de base des systèmes : le modèle objets, le contrôle des accès, le contrôle réparti, la fiabilité, l'hétérogénéité, l'efficacité et la tolérance aux fautes. Applications de ces concepts à la conception des systèmes d'exploitation répartis, des serveurs de fichiers répartis et des bases de données distribuées. Répartition des charges et des ressources : taxonomie et algorithmes. Gestion des systèmes répartis.

Préalable : IFT 628 ou IFT 689

IFT 740

3 cr.

Programmation parallèle (3-0-6)

Objectif: connaître les algorithmes parellèles, les langages et les techniques de programmation qui ont été développés pour les différentes classes d'ordinateurs parallèles.

Contenu: classification des algorithmes et des architectures parallèles. Ordinateurs pipelines et traitement vectoriel. Vectorisation des programmes. Ordinateurs matriciels, leurs algorithmes et langages de programmation. Multiprocesseurs. Détection du parallèlisme dans les programmes et algorithmes parallèles pour les multiprocesseurs. Ordinateurs et langages flot de données. Ordinateurs systoliques.

Préalables : IFT 628 et IFT 658

IFT 741

3 cr.

Systèmes Informatiques répartis (3-0-6)

Objectifs: approfondir les concepts des systèmes répartis et les problèmes qu'entraine leur implantation; comprendre et maîtriser diverses implantations de ces concepts. Contenu: présentation de certains concepts

Concentian de systèmes : le modèle objets, le contrôle des eccès, le contrôle réparti, la fiabiliré, l'hétérogénéité et l'efficacité. Systèmes d'exploitation répartis et serveurs de fichiers répartis : concepts et implantation. Répartition de charge : taxonomie et algorithme. Appels de procédures éloignées. Conception de systèmes répartis. Gestion de processus répartis : concepts et algorithmes.

Préalable : IFT 685

IFT 743

3 cr.

Flabilité des systèmes (3-0-6)

Objectifs: connaître les modèles et utiliser les techniques de détection et d'isolation des fautes matérielles et logicielles; concevoir un système robuste et tolérant aux fautes.

Systeme routes et tolerant aux rautes. Contenu: fiabilité du matériel et du logiciel d'un système informatique. Fautes matérielles: approches expérimentales et empiriques; théories fondées sur le modèle; détection des fautes; isolation des fautes. Fautes logicielles: techniques de tests; détection des fautes; recouvrement; rectification. Études de

IFT 744

3 cr.

Sujets approfondis en télématique (3-0-6) Objectifs : connaître de façon approfondie les

Objectifs : connaître de façon approfondie les protocoles; connaître et apprécier le niveau actuel de la recherche en télécommunications.

Contenu: modèle de référence de l'ISO. ArchitectureTCP/IR. Interconnexion des réseaux (IP). Couche transport: ISO-TF, TCP, UDP. Couche session. Couche présentation. Couche application: ACSE, ROSE, CCR, VT, FTAM, MOTIS, Telnet, FTP, SMTP. Aspects système: DNS, X.500. Spécification, vérification et implantation de protocoles. Langages de spécification formelle: ASN-1, SDL, Estelle, Lotos. Tests de conformité et séquences de tests. Gestion des réseaux: CMIP. SNMP.

Préalable : IFT 585

IFT 745

3 cr.

Simulation de modèles (3-0-6)

Objectifs: approfondir sa connaissance des concepts classiques utilisés dans la modélisation et la simulation d'un système; démontrer sa maîtrise du sujet par la réalisation d'un projet de simulation et par une participation active à des séminaires.

Contenu: revue des techniques de simulation. Méthodes de Monte Carlo. Génération de variables aléatoires. Le paysage des langages de simulation: analyse des familles et tendances actuelles. Les langages à scénarios, les langages à événements discrets, les langages continus, les langages mixtes. Étude de quelques langages de simulation. Schémas expérimentaux et évaluation des résultats d'une simulation.

IFT 747

3 cr

Conception et gestion des systèmes d'information (3-0-6)

Objectif: connaître, appliquer et évaluer les méthodes et techniques de conception et de gestion des systèmes d'information complexes et évolutifs.

Contenu : problématique de l'ingénierie des systèmes d'information. Principes méthodologiques adaptés à l'ingénierie des systèmes d'information. Qualité et ingénierie des systèmes d'information. Modélisation et conception de bases de données pour les systèmes d'information. Sécurité des systèmes d'information automatisés. Conduite des projets et gestion des systèmes d'information. Évolution et suivi des systèmes d'information. Modélisation d'entreprises. Perspectives dans les systèmes d'information.

Préalable : IFT 486

IFT 749

3 cr.

Sujets choisis en informatique de systèmes (3-0-6) Objectif : approfondir et maîtriser un sujet

Objectif: approfondir et maîtriser un sujet choisi en informatique de systèmes.

IFT 761

3 с

Techniques de test et analyse de trace (3-0-6)

Objectifs: maîtriser les techniques de test appliquées aux logiciels et aux protocoles de communication; s'initier à la notion d'obserration des entités sous test et à l'analyse des traces.

Contenu : les techniques de test de type boîte noire : les tests fonctionnels, les tests de partition des domaines, l'analyse des bomes, le graphe de causes à effets, les techniques fondées sur EFMS. Les techniques de test de type boîte blanche: le graphe de flux de données, méthodes d'analyse. Les techniques de génération des séquences de test. Les différentes notions d'observation et l'analyse de traces, les facteurs qui influencent la détection des erreurs, les architectures de test.

(FT 762

3 cr.

3 cr.

Techniques de vérification et de validation (3-0-6)

Objectifs: connaître les techniques de vérification et de validation; utiliser des techniques de vérification afin de démontrer qu'une spécification satisfait des propriétés d'exactitude; utiliser des techniques de validation afin de s'assurer qu'une spécification est conforme aux besoins; utiliser des techniques de test afin de montrer qu'un programme possède une précision satisfaisante.

Contenu : principales propriétés formelles et informelles des spécifications de systèmes. Techniques de vérification : analyse formelle de spécifications, corrections et preuves de spécifications, model checking. Techniques de validation : exécution de spécifications formelles, prototypage, simulation. Types de tests. Techniques de tests : les tests fonctionnels, les tests de partition des domaines, l'analyse des bornes, le graphe de causes à effets, le graphe de flux de données. Techniques de génération des séquences de tests. Préalable : IFT 324

IFT 781

Intelligence artificielle (3-0-6)

Objectif : se familiariser avec les grands domaines de recherche reliés à l'intelligence artificielle.

Contenu: description, modélisation et réduction des problèmes. Représentation. Traitement en langue naturelle. Apprentissage automatique. Apprentissage par contreexemples. Génération de plans. Algorithmes utilisés en reconnaissance de formes et en reconnaissance de la parole. Applications au choix.

IFT 762

Aspects numériques des algorithmes

Objectifs: connaître les besoins spécifiques aux calculs numériques; étudier les difficultés propres à l'implantation effective d'algorithmes numériques et les solutions apportées dans les logiciels modernes.

Contenu: généralités: algèbre et analyse numérique, erreurs d'arrondi. Applications, par exemple, aux équations linéaires et non linéaires, aux problèmes d'optimisation et à la statistique. Algorithmes parallèles, machines vectorielles. Autres représentations des nombres.

IFT 763 3 cr.

Conception géométrique assistée par ordinateur (3-0-6)

Objectifs: acquérir une expérience approfondie par le biais d'un projet de modélisation géométrique; connaître les outils mathématiques sous-jacents à la modélisation géométrique et de comprendre les nuances de leur utilisation et de leur implantation informatique. Contenu: courbes et surfaces: approximation et interpolation polynomiales (ß-splines, ß-splines, Bežier); algorithmes de subdivision (Oslo, De Casteljau, Dubuc). Solides: géométrie constructive solide; algorithmes d'intersection; algorithme de tracé de rayons. Affichage: simulation d'effets optiques; simulation par tracés de rayons; algorithme de radiosité.

IFT 764 3 c

Outils mathématiques du traitement du signal (3-0-6)

Objectifs : maîtriser et appliquer les outils mathématiques de base de l'analyse des signaux et des images. Contenu : séries du Fourier, transformées de

Contenu: séries du Fourier, transformées de Fourier et de Laplace. Distributions. Convolution. Transformées de Fourier des distributions. Transformées de Fourier à fanêtre glissante. Analyse des signaux par ondelettes : la transformée en ondelettes, ondelettes orthogonales, analyse multirésolution et base d'ondelettes. Applications.

IFT 765 3 cr.

Algorithmique (3-0-6)

Objectif: acquérir une connaissance approfondie des techniques de conception et d'analyse de performance des algorithmes.

Contenu: techniques d'analyse du temps de calcul et de l'espace-mémoire. Notions avancées en structure de données. Méthodes de conception d'algorithmes (techniques inductives, transformation du domaine, heuristiques, techniques probabilistes) et applications. Problèmes sans solution polynomiale.

IFT 767 3 cr.

Théorie de la complexité (3-0-6)

Objectifs : identifier les principaux aspects de la théorie de la complexité et évaluer la complexité intrinsèque d'un problème.

Contenu: modèles de calculs séquentiels et parallèles. Mesures de la complexité: temps, espace, nombre de processeurs. Hiérarchie des classes de complexité: NC, P, NP, Pespace. Notions afférentes: décidabilité, nondéterminisme, oracles, complétude. Calcul de bornes inférieures.

Préalable : IFT 438

IFT 769

Sujets choisis en informatique théorique (3-0-6)

Objectif: approfondir et maîtriser un sujet choisi en informatique théorique.

IFT 781 3 cr.

3 cr.

Théorie des automates et des langages formels (3-0-6)

Objectif: approfondir sa connaissance des principaux outils mathématiques servant à résoudre les problèmes théoriques posés par les progrès de l'informatique.

Contenu: automates finis, à piles, linéairement bornés. Langages réguliers, indépendants et dépendants du contexte. Relations entre ces divers types d'éléments. Problèmes décidables et indécidables. Machine de Turing. Machine de Turing universelle. Problème de l'arrêt. Classe des ensembles récursifs. Propriétés de fermeture des langages. Langages de Pétri.

IFT 783

3 cr.

Implantation des langages de programmation (3-0-6)

Objectifs: se familiariser avec la compilation par réduction de graphe des langages fonctionnels types et des langages fonctionnels à objets; être capable de réécrire en lambdacalcul des expressions d'un langage fonctionnel, d'écrire un vénificateur de type, d'appliquer des méthodes d'optimisation à la réduction de graphe et enfin d'utiliser correctement ces concepts lors d'une implantation d'extensions objets.

Contenu : Compilation : lambda-calcul, sémantique opérationnelle, réduction, sémantique notationnelle. Traduction d'un langage fonctionnel en lambda-calcul, schémasTE,TD. Types structurés et sémantique du filtrage. Compilation du filtrage. Réécriture des abstractions lambda de filtrage. Listes en compréhension. Contrôle de types polymorphes. Vérificateur de type. Réduction de graphe s'une représentation de programme. Sélection du redex suivant. Réduction du graphe d'une expression lambda. Supercombinateurs, supercombinateurs récursifs. Évaluation totalement paresseuse, combinateurs SK. Machine G. Optimisation. Analyse d'exactirude. Réduction parallèle de graphe. Implantation d'extensions objets : ObjVLisp, Loops.

IFT 785 3 cr.

Approches orientées objets (3-0-6)

Objectifs: connaître les concepts des approches orientées objets; concevoir le développement de systèmes informatiques dans une optique orientée objets; comparer des méthodes et outils orientés objets afin de pouvoir choisir ceux qui conviennent le mieux dans le développement de systèmes particuliers.

Contenu: concepts de base: objet, acteur, agent, classe, message, héritage, délégation, instanciation, clonage, spécialisation, différenciation, classe abstraite, généricité, polymorphisme, persistance. Méthodes d'analyse et de conception orientées objets, comme OOD, HOOD, OMT, OOSE, OOAD et RDD. Langages orientés objets, tels que Smalltalk, C++, Eiffel, CLOS, ABCL. Outils pour le dévelopmement orienté objets.

IFT 786 3 cr.

Vision par ordinateur (3-0-6)

Objectifs: approfondir les connaissances en vision par ordinateur; être au courant des recherches; être capable de développer des applications réelles.

Contenu: vision par ordinateur: objectif et applications. Éléments de base: signal, convolution, filtrage et transformée. Formation des images: système d'acquisition et formation physique. Prétraitement: réduction du bruit, rehaussement et restauration. Extraction de caractéristiques: contour, région et texture. Reconnaissance de formes: représentation, reconnaissance et interprétation. Reconstruction 3D de l'image: calibration, stéréovision, mouvement et vision monoculaire. Localisation d'objets. Applications au choix

IFT 787 3 cr.

Imagerie (3-0-6)

Objectif: connaître l'ensemble des problèmes mathématiques et informatiques qui se posent en imagerie numérique et appliquer ces connaissances à la conception assistée par ordinateur.

Contenu: schéma général d'un système de vision artificielle. Perception et synthèse d'images. Acquisition des images. Prétraitement et segmentation. Indice visuel. Description symbolique. Interprétation et modélisation des objets à trois dimensions. Approximation et interpolation des courbes et surfaces. Construction géométrique des solides. Problèmes d'intersection et d'affichage. Applications.

Préalable : IFT 428

IFT 790 4 cr.

Activités de recherche I

Objectif : mettre en pratique la méthodologie des premières étapes de la recherche scientifique.

Contenu : le travail comporte les étapes suivantes : recherche bibliographique permettant de situer son projet de recherche par rapport aux recherches existantes; définition d'une problématique de recherche; détermination des hypothèses de travail; élaboration de la méthodologie à être utilisée. À la fin de cette activité, l'étudiante ou d'étudiant doit déposer un plan préliminaire de sa recherche.

IFT 791 · 4 cr

Activités de recherche II

Objectif : mettre en pratique la méthodologie des dernières étapes de la recherche scientifique.

Contenu: le travail comporte les étapes suivantes: précision de la problématique de recherche et des hypothèses de travail, poursuite de la réalisation du projet. Au terme de l'activité, l'étudiante ou d'étudiant est autorisé à rédicar son mémoire.

IFT 792 2 cr.

Séminaire de maîtrise

Objectifs: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: le travail comporte les étapes suivantes: participation à un séminaire de recherche dans son domaine, critique et évaluation des présentations, deux prestations par étudiante ou par étudiant.

IFT 793 7 cr.

Présentation de mémoire

Objectif: exposer et défendre un travail de recherche.

Contenu : présentation du contenu du mémoire lors d'un séminaire public. Cet exposé a lieu au plus tard au moment du dépôt offi-

IFT 794 13 cr.

Mémoire

Objectif: écrire un mémoire de maîtrise. Contenu: rédaction d'un mémoire décrivant les résultats obtenus au cours d'activités de recherche et démontrant l'acquisition d'aptitudes à poser un problème, à en faire l'analyse et à proposer des solutions appropnées.

IFT 795

2 cr.

Séminaire

Objectif: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale. Contenu: le travail de la candidate ou du candidat comporte les étapes suivantes: participation à un séminaire de recherche dans son domaine, critique et évaluation des présentations, deux prestations par étudiante ou par étudiant.

IFT 796 16 cr.

Activités de recherche

Objectif: sous la supervision de la directrice ou du directeur de recherche, s'initier à la méthodologie de la recherche scientifique.

Contenu: le travail de la candidate ou du candidat comporte les étapes suivantes: recherche bibliographique permettant de situer son projet de recherche par rapport aux recherches existantes, définition d'une problématique de recherche, détermination des hypothèses de travail, élaboration de la méthodologie à être utilisée et réalisation du projet. Au terme de l'activité, l'étudiante ou l'étudiant est autorisé à rédiger son mémoire.

IFT 797 12 cr.

Mémoire

Objectif : développer la capacité de communiquer par écrit les résultats obtenus lors d'une recherche.

Contenu: sous la supervision de la directrice ou du directeur de recherche, l'étudiante ou l'étudiant rédige un mémoire décrivant les résultats obtenus au cours de ses activités de recherche et démontrant l'acquisition d'aptitudes à poser un problème, à en faire l'analyse et à proposer des solutions appropriées.

IFT 801 3 cr.

Séminaire de recherche i (1-2-6)

Objectifs: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

IFT 802

Séminaire de recherche ii (1-2-6)

Objectifs: critiquer et évaluer des présenta-

tions scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

IFT 803 3 cr.

Séminaire de recherche III (1-2-6)

Objectifs : critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

IFT 804 3 cr.

Séminaire de recherche IV (1-2-6)

Objectifs: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

3 cr.

IFT 895 41 cr.

Activités de recherche et séminaire

IFT 897 12 cr.

Examen général

IFT 899 25 cr.

Thèse

IML

IML 300 2 cr.

Immunologie (2-0-4)

Objectifs: connaître les éléments du système immunitaire et comprendre son fonctionnement et son importance dans le maintien de l'organisme vivant dans un environnement hostile; maîtriser les principes et comprendre les applications scientifiques de l'immunologie et de la sérologie.

Contenu: concepts fondamentaux, immunobiologie générale, les réactions immunitaires in vitro, les propriétés des antigènes, le mécanisme de production des anticorps, les propriétés des anticorps. Les propriétés et les rôles du complément, l'immunologie des groupes sanguins humains, l'hypersensibilité de type immédiat et retardé, les problèmes actuels en immunologie.

IML 302 3 cr.

Immunologie (2-3-4)

Objectifs : connaître les éléments du système immunitaire et leur fonctionnement dans la défense contre des maladies aiguês et chroniques. Comprendre les mécanismes et les structures moléculaires et cellulaires qui sont à la base de la réponse immunitaire. Être capable d'expliquer les principes d'une série de tests immunologiques et de discuter de leurs limitations de façon à pouvoir juger leurs valeurs relatives. Être capable d'utiliser la littreture scientifique pour étudier les avancements récents en immunologie.

Contenu: concepts fondamentaux du système immunitaire. La structure et les fonctions d'anticorps. L'identification des molécules et les mécanismes moléculaires qui constituent la réponse immunitaire. Le mécanisme génétique et les facteurs chimiques qui contrôlent l'activité du système immunitaire. Les mécanismes immunologiques impliquées dans les maladies tels le SIDA, l'arthrite et le diabète. Test d'immunoprécipitation, d'agglutination, fixation du complément et l'immuno-électro-phorèse. Préparation et présentation d'une affiche sur un sujet récent en immunologie.

INS

INS 113

3 cr.

Je démarre mon entreprise

Objectifs: acquérir des connaissances sur l'enectire reneuriat, le démarrage d'entreprise et les techniques de réalisation du plan d'afaires. Développer des aptitudes à la réalisation du plan d'affaires, assimiler des attitudes entrepreneuriales.

Contenu: présenter l'entrepreneur, son environnement et les opportunités d'affaires pour lesquelles un marché existe. Identifier les plans d'allocation des ressources nécessaires à l'entrepreneur. Insister sur l'importance des réseaux. Concrétiser les plans d'affaires. Comprendre que le plan d'affaires. Comprendre que le plan d'affaires en dentifier les risques. Amener le futur entrepreneur à réfléchir sur l'ensemble des problèmes relatifs à la création ou à la reprise ou au redressement d'une entreprise. Activité de formation à distance. Cette activité est mutuellement exclusive à ADM 102.

IS 144

Travail autonome et Informatique

Objectifs : dans le cadre d'un projet de microentreprise ou de travail autonome dans le domaine de l'informatique ou de l'informatique de gestion : identifier un produit ou un service commercialisable; réaliser les études de marché, de faisabilité et de rentabilité; en rédiger le plan d'affaires; en planifier le démarrage et en appliquer les principes de gestion; connaître les formes de propriété intellectuelles qui concernent le domaine de l'informatique et de l'informatique de gestion; connaître les aspects légaux et fiscaux; acquérir et appliquer les connaissances de base nécessaires au démarrage et à la gestion d'une microentreprise ou d'un travail autonome dans le domaine de l'informatique ou de l'informatique de gestion.

Contenu: entrepreneurship, travail autonome et microentreprise. Environnement de l'entrepreneur, de l'entreprise et du travailleur autonome dans le secteur de l'informatique ou de l'informatique de gestion. Évaluation du potentiel entrepreneurial. Les occasions d'affaires en informatique et en informatique de gestion. Comptabilité et nouvelle entreprise. La propriété intellectuelle et l'informatique. Les étapes du démarrage d'une en-treprise. L'étude du marché et de la concurrence. Les études de faisabilité et de rentabilité de projet. Le plan d'affaires : contenu et importance. Communiquer son plan d'affaires. La gestion au quotidien. La gestion de soi, du temps, du stress et des priorités. Les réseaux d'affaires.

Préalable : avoir obtenu 48 crédits

MAR

MAR 221 3 cr.

Marketing

Objectif : acquérir les notions de base de marketing.

Contenu : le concept de marketing. Les différentes étapes conduisant de l'innovation du produit à sa commercialisation. Introduction au comportement du consommateur. La demande et les marchés. Les produits et la concurrence. Initiation à la stratégie de marketing. Le plan de marketing. Le marketingmix. La vente. Le marketing dans la société contemporaine.

MAR 331 3 cr.

Comportement du consommateur

Objectif: assimiler les concepts de base du comportement des consommateurs de façon à pouvoir les utiliser efficacement sur le plan pratique. Contenu : les modèles en comportement du consommateur. La culture, les sous-cultures et les classes sociales. Les groupes de référence et la famille. Les situations. La perception. La personnalité. La motivation. Les attitudes et la rélation attitude-comportement. La communication persuasive. Le processus de décision d'achat.

Préalable : MAR 221

MAT

MAT 113

3 cr

Logique et mathématiques discrètes (3-2-4)

Objectifs: arriver à un niveau d'abstraction jugé fondamental pour la poursuite d'études universitaires en sciences; se familiariser avec les différentes techniques de preuve existantes et avec les concepts fondamentaux nécessaires à la réalisation de telles preuves; être apte à mathématiser les idées exprimées dans une langue naturelle.

Contenu : logique : calcul propositionnel et algèbre de Boole, applications aux circuits logiques combinatoires, calcul des prédicats. Théorie axiomatique des ensembles. Techniques de preuve : preuve par l'absurde (contradiction, contraposée), induction vs déduction; induction mathématique, induction mathématique généralisée, induction constructive, congruences. Méthodes élémentaires de dénombrement : arrangement, combinaison, coefficients binomiaux. Nombre d'injections, de surjections.

MAT 121 3 cr.

Algèbre I (3-2-4)

Objectifs: développer l'aptitude au raisonnement algébrique; introduire à partir d'exemples concrets les notions élémentaires d'algèbre (groupes, anneaux et corps). Contenu: lois de composition, groupes, sous-

Contenu : lois de composition, groupes, sousgroupes, ordre d'un élément, groupes cycliques. Permutations, groupe symétrique, théorème de Cayley. Théorème de Lagrange et groupes quotients. Anneaux, domaines d'intégrité et corps, anneaux de polynômes sur un corps.

MAT 125 3 cr. Calcul différentiel et Intégral (3-2-4)

Objectifs : se familiariser avec les outils fondamentaux du calcul différentiel et intégral et être apte à les utiliser.

Contenu : suites de nombres réels : bomées, monotones, convergentes, sous-suites. Calcul des limites. Étude des séries réelles. Série de puissance. Les fonctions d'une variable réelle. Dérivation. Théorème de la moyenne, approximation. Techniques d'intégration, méthodes numériques. Introduction aux fonctions à plusieurs variables, dérivées partielles, régles d'enchaînement, problèmes d'extréma. Intégrales itérées des fonctions à 2 et 3 variables; coordonnées polaires, sphériques, cylindriques; Jacobien et changement des limites d'intégration. Intégrales impro-

MAT 128 3 cr

Éléments d'analyse (3-2-4)

nres

Objectif: avoir une idée rigoureuse du continuum réel et de la notion de convergence soit sous forme de la limite d'une suite réelle, de

3 cr.

la somme d'une série réelle et de la limite d'une fonction réelle.

Contenu: présentation axiomatique du corps des nombres réels et de quelques conséquences. Étude des suites de réels et de la complétude de R. Quelques limites importantes. Étude des séries réelles : critère de convergence absolue et quelques fonctions élémentaires. Limite et continuité d'une fonction réelle d'une variable réelle. Continuité uniforme et ses conséquences. Dérivation, problèmes d'extréma, théorème de Rolle, théorème de Taylor.

MAT 133 3 cr.

Calcul différentiel (3-2-4)

Objectifs: acquérir une perception juste du continuum réel et avoir une idée rigoureuse de la notion de convergence sous les formes d'une suite convergente et d'une limite d'une fonction réelle à une variable réelle.

Contenu: les réels, inégalités, valeur absotue, borne supérieure. Suites réelles: bornées, monotones, convergentes. Sous-suites. Théorème de Bolzano-Weierstrass. Calcul des limites. Les fonctions réelles: points d'accumulation, limite d'une fonction, liens avec les suites. Continuité. Dérivées, règle d'enchaînement, problèmes d'extréma, tebleau des variations. Théorème des fonctions à une ou plusieurs variables. Problèmes d'extréma avec ou sans contrainte.

MAT 134 3 cr.

Mathématiques discrètes (3-2-4)

Objectif: se familiariser avec le langage de base des mathématiques et les concepts fondamentaux essociés au discret: récurrence, arithmétique, dénombrements, calcul propositionnel, ensembles et graphes.

Contenu: raisonnement par récurrence. Ensembles, relations, fonctions. Calcul propositionnel et arguments valides. Entiers, divisibilité, décomposition en nombres premiers, algorithme d'Euclide, arithmétique modulaire. Dénombrements, coefficients binomiaux, combinaisons, arrangements. Graphes et graphes orientés: concepts fondamentaux, arbres; matrices associées à un graphe; graphes connexes, eulériens, hamiltoniens, bipartis; coloriage.

MAT 143 3 cr.

Algèbre linéaire i (3-2-4)

Objectifs: maîtriser les concepts fondamentaux sur les espaces vectoriels, entre autres les notions de génération et d'indépendance linéaire, qui seront présentés d'une façon rigoureuse selon la méthode axiomatique; résoudre manuellement d'une façon efficace et complète les systèmes d'équations linéaires de petite teille et acquérir une sensibilité algébrique et une intuition géométrique des phénomènes mathématiques multidimensionnels.

Contenu: nombres complexes, espaces vectoriels, dépendance et indépendance linéaire, base et dimension, somme et somme directe. Applications linéaires et matrices. Algèbre matricielle, rang et nullité. Changement de base, matrices semblables, systèmes d'équations linéaires, algorithme de Gauss. Variétés linéaires

MAT 182

3 cr

Algèbre linéaire (3-2-4)

Objectifs: étudier les matrices et les systèmes linéaires en voyant plusieurs illustrations de leur utilité dans les autres sciences; acquérir les notions théoriques fondamentales de l'algèbre linéaire reliées aux notions d'indépendance linéaire et d'orthogonalité dans le cas où les scalaires sont réels.

Contenu : algèbre des matrices, illustrations de l'utilité des opérations matricielles, tableaux de données socioéconomiques, comparaison de prix, balances commerciales, etc., graphes, chaînes de Markov. Systèmes d'équations linéaires, algorithme de Gauss-Jordan, inversion de matrices, une application : l'analyse intersectorielle, décomposition A = LU. Espaces vectoriels, sous-espaces, combinaisons linéaires, indépendance linéaire, bases et dimension, rang et nullité d'une matrice. Déterminant d'une matrice. Produit scalaire euclidien, orthogonalité, procédé de Gram-Schmidt, décomposition A = QR, projection orthogonale et méthode des moindres carrés. Premières notions sur les valeurs propres et les vecteurs propres des matrices.

MAT 193 3 cr.

Algèbre linéaire (3-1-5)

Objectifs : acquérir les concepts et techniques de l'algèbre linéaire. Appliquer ces concepts et techniques à l'analyse de problèmes linéaires de la physique.

Contenu : vecteurs, indépendance linéaire, bases; géométrie analytique; produits scalaire et vectoriel; nombres complexes. Espaces vectoriels, matrices et opérateurs linéaires, systèmes d'équations linéaires, déterminants, espace dual, formes quadratiques et hermitiques, orthonormalisation. Opérateurs hermitiques, orthogonaux, unitaires. Valeurs propres et vecteurs propres. Diagonalisation d'une matrice, d'une forme quadratique; fonctions de matrices. Systèmes d'équations différentielles linéaires. Offert aux étudiantes et aux étudiants inscrits en physique.

MAT 194 3 cr

Calcul différentiel et intégral i (3-1-5)

Objectifs: maîtriser les techniques du calcul différentiel appliqué aux fonctions d'une ou plusieurs variables. Appliquer les techniques de résolution des équations différentielles ordinaires.

Contenu: rappels de calcul différentiel, fonctions élémentaires, formule de Taylor. Équations différentielles ordinaires: classification, équations du premier ordre, équations linéaires. Fonctions de plusieurs variables: coordonnées curvilignes, représentations graphiques, dérivées partielles, gradient, différentielle, règle de chaîne. Série de Taylor à plusieurs variables, extremums, cols, contraintes. Offert aux étudiantes et aux étudiants inscrits en physique.

MAT 195 3 c

Calcul différentiel et intégral (3-1-5)

Objectifs: acquérir les notions de dérivée partielle, d'intégrale double et triple et d'intégrale curviligne et s'initier à la théorie élémentaire des équations différentielles ordinaires. Contenu: fonctions à plusieurs variables: dérivées partielles, développement de Taylor à une et deux variables, extréma, Hessien, multiplicateurs de Lagrange. Intégrales doubles et triples, intégrale curviligne, calcul de

volumes, de moments d'inertie, de centre de masse. Équations différentielles du premier ordre : séparation de variables, équations homogènes, exactes et nonexactes, facteurs d'intégration, équations linéaires et de Bemouilli. Équations d'ordre supérieur : dépendance linéaire, Wronskien, opérateur D. Pour les étudiantes et les étudiants de chimie et du baccalauréat en enseignement au secondaire.

MAT 228

Techniques d'analyse mathématique (3-2-4)

Objectifs: maîtriser les techniques d'intégration de fonctions à une ou plusieurs variables et s'initier au calcul différentiel vectoriel.

Contenu: intégrale de Riemann: théorème fondamental, techniques d'intégration, intégrale de Riemann: théorème grales impropres. Fonctions de deux ou trois variables: dérivée partielle, directionnelle, différentielle totale, interprétation géométrique du gradient. Applications vectorielles: différentielle et jacobien, dérivation des applications composées. Calcul des intégrales doubles et triples: changement d'ordre d'intégration, formule de changement de variables et cas particuliers: transformation linéaire, passage aux coordonnées polaires, cylindriques et sphériques. Intégrales multiples impropres.

MAT 233 3 cr.

Calcul intégral (3-2-4)

Objectifs: acquérir les notions globales classiques sur les fonctions réelles continues, dérivables ou intégrables et pouvoir en démontrer la maîtrise en résolvant quelques problèmes typiques de l'analyse élémentaire. Contenu: étude des séries réelles, séries de puissance. Polynômes de Taylor et de MacLaurin et applications. Intégration: techniques, méthodes numériques. Intégrales itérées des fonctions à 2 et 3 variables: coordonnées polaires, sphériques, cylindriques. Introduction aux nombres complexes: Jacobien et changement des limites d'intégration. Dérivation sous le signe d'intégration. Intégrales impropres.

Préalable : MAT 133

MAT 235

Algèbre appliquée (3-2-4)

Objectif: se familiariser avec les concepts et les résultats algébriques nécessaires à la compréhension d'activités pédagogiques à suivre ultérieurement pendant la formation.

Contenu: monoïdes, homomorphismes, groupes, sous-groupes. Théorème de Lagrange. Permutations, matrices de rotations, translations. Propriétés élémentaires des anneaux et des corps: anneau des entiers modulo p. Théorème du reste chinois. Introduction à la théorie des graphes: graphes orientés et non orientés, sous-graphes, cycles et circuits, connexité. Matrice associée à un graphe. Abre, abre générateur. Graphe complet et coloriage.

Préalable : MAT 113

MAT 243 3 cr.

Algèbre linéaire II (3-1-5)

Objectif: s'initier à un ensemble de concepts tournant autour de la notion de valeur propre et à son rôle dans la classification de certaines classes importantes de transformations linéaires.

3 cr.

Contenu: déterminants, règle de Cramer. Espace dual, base duale, bidual, annulateurs, application transposée. Valeurs et vecteurs propres d'une matrice ou d'une application linéaire, caractérisation des opérateurs diagonalisables. Produits scalaires et orthogonalité, espaces euclidiens. Adjoint d'un opérateur, opérateurs hermitiens, antihermitiens et orthogonaux. Diagonalisation des opérateurs normaux d'un espace euclidien, théorème des axes principaux, coniques et quadriques.

Préalable : MAT 143

MAT 291 3 cr

Calcul différentiel et Intégral II (3-1-5)

Objectifs: maîtriser les techniques du calcul intégral appliquées aux fonctions (scalaires ou vectorielles) de plusieurs variables. Connaître les équations différentielles aux dérivées nariables

Contenu: intégrales curvilignes, intégrales multiples, intégrales de surface. Changements de variables, jacobien. Divergence et rotationnel, théorèmes de Gauss et de Stokes, champ conservatif, différentiation en chaîne, laplacien. Équations aux dérivées partielles: équations du premier ordre, équation de Laplace, équation d'onde. Offert aux étudiantes et aux étudiants inscrits en physique.

Préalable : MAT 194

MAT 292 3 cr.

Algèbre linéaire (3-1-5)

Objectif: acquérir les bases algébriques essentielles aux divers domaines de la physique: mécanique quantique, physique du solide, etc.

Contenu: espace vectoriel à n dimensions; équations linéaires, représentation matricielle; propriétés générales des matrices (notation, addition, multiplication); déterminant, évaluation, produit; transposition, inversion, matrice unité, delta de Kronecker; résolution d'équations linéaires; valeur propre, vecteur propre; transformations orthogonales, diagonalisation; matrice unitaire, hermitienne; espace de fonctions, suite orthonormée; séries de Fourier; transformée de Fourier.

MAT 297 3 ci

Compléments de mathématiques (3-1-5)

Objectif: se familiariser avec les concepts et applications de l'analyse de Fourier, les notions de distribution.

Contenu: séries de Fourier, représentation complexe, convergence en moyenne, applications. Distributions: fonctions test, fonction delta, fonction de Heaviside. Opérations sur les distributions, convolution, applications. Transformée de Fourier, applications, relation avec les séries de Fourier. Offert aux étudiantes et aux étudiants inscrits en physique.

Préalable : MAT 193 Antérieure : MAT 194

MAT 321 3 cr.

Algèbre II (3-1-5)

Objectifs: connaître les caractéristiques les plus importantes des principales structures algébriques, en particulier des structures quotients, et développer une certaine familiarité avec ces structures, en les utilisant dans la construction de corps finis et dans la théorie des codes.

Contenu : compléments sur les groupes, théorèmes d'isomorphisme et applications, groupes opérant sur un ensemble. Anneaux et corps, anneaux quotients, théorèmes d'isomorphisme et applications. Anneaux intègres et euclidiens. Corps des frections d'un domaine d'intégrité. Factorisation et divisibilité dans les domaines à idéaux principaux, algorithme d'Euclide. Corps finis et applications aux codes correcteurs d'erreurs.

Préalables: MAT 121 et MAT 143

MAT 324

3 cr.

Modèles mathématiques (3-1-5)

Objectifs: par de nombreux exemples tirés de la physique, de la biologie, de l'économique, de la gestion, initier à certaines notions de base de ces domaines; apprendre à décrire des situations réelles de façon quantitative ainsi qu'à trouver et formuler les relations qui existent entre les différentes variables de base.

Contenu : équations différentielles et aux différences du premier ordre : solutions particulières et solutions générales. Équations aux différences et équations différentielles linéares à coefficients constants ou non d'ordre supérieur ou égal à 2. Systèmes d'équations du premier ordre.

Préalables : (MAT 128 ou MAT 233) et (MAT 143 ou MAT 182)

MAT 334 3 cr.

Topologie générale (3-1-5)

Objectifs: connaître les notions de base en topologie et maîtriser quelques-uns des outils de l'analyse moderne.

Contenu: espaces topologiques. Espaces métriques. Sous-espace, produit fini d'espaces. Continuité, limite, suite. Espaces compacts, connexes, complets. Méthodes des approximations successives.

Concomitante: MAT 453

MAT 345 3 cr.

Complément d'analyse (3-1-5)

Objectifs: saisir les circonstances où l'on peut interchanger deux opérations quelconques choissies parmi: la somme infinie, la détivée, l'intégrale, la limite; représenter une fonction à l'aide de l'une de ces opérations. Contenu : notions d'espaces métriques, compléments sur les suites, convexité et applications. Suites de fonctions : convergence simple, convergence uniforme. Séries de fonctions : séries entières; dérivation, intégration. Calcul approché de la somme d'une série. Intégrales impropres. Dérivation sous le signe d'intégration. Fonctions eulériennes. Série de Fourier des fonctions à variation bornée. Transformée de Laplace.

Préalable : MAT 128

MAT 421 3 cr.

Ensembles ordonnés (3-1-5)

Objectifs: se familiariser avec les différentes notions reliées à celle de l'ordre; être en mesure de les reconnaître et de voir comment elles interviennent dans divers domaines des mathématiques.

Contenu: relation d'ordre, ordre total, bon ordre; éléments maximaux, condition de chaîne. Treillis modulaires, distributifs, achevés. Fermetures. Nombres cardinaux, nombres ordinaux, axiome du choix. Groupes et anneaux ordonnés.

Préalables : MAT 121 et MAT 143

MAT 424

3 cr.

Fonctions complexes (3-1-5)

Objectifs: connaître les propriétés fondamentales des fonctions holomorphes d'une variable complexe, le théorème de Cauchy et ses conséquences; maîtriser la théorie des résidus avec des applications au calcul des intégrales impropres.

grales impropres.
Contenu: nombres complexes et représentation géométrique. Topologie de C. Fonctions continues, analytiques; conditions de Cauchy-Riemann; fonctions élémentaires, Intégration: intégrale de ligne, théorème de Cauchy, formule intégrale de Cauchy, théorème de Morera et de Liouville, principe du maximum. Séries : séries de Taylor, formule de Hadamard, théorèmes d'Abel et de Taylor, séries et théorème de Laurent, singulantés, théorème des résidus, théorème de l'argument, théorème de Rouché.

Concomitante: MAT 453

MAT 437

3 cr.

3 cr.

Méthodes numériques I (3-1-5)

Objectifs: connaître et maîtriser les concepts et méthodes de résolution numérique par une approche rigoureuse de la théorie et savoir confronter les résultats avec les prédictions de la théorie; développer son intuition et sa capacité à pondérer les caractéristiques des algorithmes de façon à savoir lesquels privilégier selon le contexte problème-algorithmemachine.

Contenu : arithmétique en point flottant, validité numérique des résultats théoriques. Systèmes linéaires, méthodes directes et itératives, de décomposition, de projection, de rotation, analyse d'erreur, optimisation associée. Vecteurs et valeurs propres d'une matrice.

Préalables : IFT 159 et (MAT 125 ou MAT 128 ou MAT 133 ou MAT 195) et (MAT 143 ou MAT 182)

MAT 453

Calcul différentiel et intégral dans R°

Objectifs: maîtriser les techniques d'analyse vectorielle et s'initier à ses nombreuses applications.

Contenu : rappels sur la dérivation à plusieurs variables. Dérivées d'ordre supérieur à un : potentiel, rotationnel et divergence d'un champ vectoriel, formule de Taylor et classification de points critiques. Fonctions inverses et implicites, théorème de Lagrange et extréma liés. Courbes paramétrisées : longueur d'arc, plan osculateur, courbure et torsion, intégrale curviligne, travail d'un champ de force, champs conservatifs. Surface paramétrisée : aire de surface, plan tangent, orientation, intégrale de surface, flux d'un champ vectoriel. Théorèmes de Green, Stokes, Gauss et leurs interprétations physiques. Pen un conservatifs différentiables dans per le varietés différentiables dans per leurs interprétations provinces de la varietés différentiables dans per leurs interprétations de la la conservation de la conservat

Préalable · MAT 228

MAT 521 3 cr.

Anneaux et modules (3-0-6)

Objectifs: être capable de décomposer une structure donnée en structures simples et ce, dans le cas particulier des modules sur un anneau à idéaux principaux; être capable de démontrer les théorèmes de décomposition, d'en saisir la signification et l'intérêt dans les cas particuliers de l'anneau des entiers ou de

l'anneau des polynômes à une indéterminée sur un corps et d'appliquer ces résultats à la détermination des formes canoniques d'une matrice sur un corps.

Contenu : rappels et compléments sur les anneaux. Factorisation dans les domaines d'intégrité. Modules, homomorphismes de modules, modules libres et leurs sous-modules. Théorème fondamental de décomposition d'un module de type fini sur un anneau principal. Application aux groupes abéliens de type fini, formes canoniques des matrices sur un corps.

Préalable : MAT 243

MAT 523

initiation à la recherche mathématique (0-0-9)

Objectifs : s'initier aux techniques de recherche dans un domaine des mathématiques: être capable de constituer la bibliographie pertinente, de mener à bien une étude personnelle et d'en présenter les résultats par écrit et oralement.

Préalable : avoir obtenu 50 crédits du pro-

MAT 526

3 cr.

Équations différentielles (3-0-6)

Objectifs : s'initier à la théorie qualitative des équations différentielles et voir quelques applications de la théorie à l'écologie, l'économique, l'art de l'ingénieur, la physique.

Contenu : systèmes linéaires à coefficients constants, exponentielles d'une matrice, étude qualitative des systèmes linéaires plans, systèmes nonhomogènes, comportement asymptotique d'un système linéaire quelconque. Théorèmes d'existence et d'unicité. Solutions en séries, équations de Legendre, Hermite, Bessel. Stabilité des équilibres, théorème de Liapounov-Poincaré. Applications : le régulateur de Watt, modèle de Volterra-Lotka pour un système écologique de type prédateur-proie.

Préalables : MAT 324 et MAT 453

MAT 527

3 cr

Méthodes numériques II (3-0-6)

Objectifs: poursuivre l'apprentissage commencé en MAT 437 et être en mesure d'apprécier les méthodes numériques proposées selon les critères de coût d'évaluation, de précision numérique et de convergence. Contenu : équations non linéaires, cas polynomial, cas général. Approximation, interpolation et lissage. Intégration et dérivation numériques. Vitesse de convergence. Méthodes d'accélération.

Préalable : MAT 437

MAT 534

Intégration et théorie des fonctions

Objectifs: assimiler la notion fondamentale de la fonction réelle intégrable au sens de la mesure de Lebesgue sur R et s'initier à certaines applications de cette notion.

Contenu : compléments sur les fonctions : semicontinues, convexes, à variation bornée, absolument continues. Mesure de Lebesque sur R. Fonction mesurable. Intégrale de Lebesgue. Théorème de Beppo-Lévi, Lemme de Fatou, théorème de convergence domi-

née de Lebesque. Espaces L. Inégalités de Hölder et Minkowski.

Préalable : MAT 453

MAT 543

3 cr.

Éléments de combinatoire (3-0-6)

Objectifs: se familiariser evec certaines techniques classiques et modernes en combinatoire, particulièrement celles qui mettent en évidence des structures algébriques, et tirer de ces techniques divers résultats fondamen-

Contenu : problèmes de dénombrements : classiques, nombres multinomiaux, exponentiels et de Stirling. Séries formelles et fonctions génératrices ordinaires et exponentielles. Notions sur les espèces de structures. Fonction de Möbius, algèbre d'incidence, formule d'inversion, applications, formules du crible. Récurrences linéaires sur un corps fini, suite pseudo-aléatoire. Théorie de Burnside et de Polva.

Préalable : MAT 321

MAT 622

3 cr.

Théorie des corps (3-0-6)

Objectif: maîtriser la théorie de Galois et saisir l'utilité de l'algèbre abstraite dans un domaine de la théorie de l'information : la théorie des codes.

Contenu : corps, caractéristique d'un corps. · Adjonction, éléments algébriques, transcendants, corps algébriquement clos, corps de decomposition d'un polynôme, construction à l'aide de la règle et du compas. Extensions normales, automorphismes de corps, corps parfaits, extensions galoisiennes, groupe de Galois d'une extension, problème de la résolubilité des équations par radicaux. Corps finis, extensions des corps finis, polynômes sur les corps finis, codes linéaires en-correcteurs, codes cycliques, codes BCH 2-correc-

Préalable : MAT 321

MAT 623

3 ... Topologie algébrique (3-0-6)

Objectif : s'initier aux notions de groupe fondamental, d'homologie simpliciale ou singulière et à leurs applications en théorie du point

fixe et de champs de vecteurs. Contenu : notions de convexité, homotopie, groupes fondamentaux, rétractés, groupe fondamental de S1, simple connexité de S2, groupe fondamental d'un produit. Limites et colimites dans les catégories, cas des Ens, de Top, de Ab et de Gr. Homologies singulière et simpliciale d'un espace topologique. invariance homotopique, suite d'homologie relative. Groupes d'homologie de Sº, théorème du point fixe de Brouwer. Théorème de Borsuk-Ulam.

MAT 644

3 cr.

Théorie des fonctions et espaces fonctionnels (3-0-8)

Objectifs: s'initier aux techniques modernes de l'analyse fonctionnelle; maîtriser les notions et les outils de base du sujet; apprendre à utiliser ces notions et à illustrer la puissance de ces techniques à l'aide de nombreux exemples tirés de différents domaines de l'analyse.

Contenu : espace normé, complété, Topologies sur les espaces de fonctions : convergence simple, uniforme, uniforme sur les compacts; normes L, inégalités de Hölder et Minkowski. Théorèmes d'Ascoli, de Dini et de Stone-Weierstrass. Applications linéaires continues, normes d'opérateurs. Théorème de Hahn-Banach, Dualité, Espaces d'Hilbert, ensemble orthonormal complet.

Préalable : MAT 345

MAT 656

3 cr.

Fondements de la géométrie (3-0-6)

Objectif : développer la géométrie euclidienne dans le plan et dans l'espace en utilisant les outils d'algèbre linéaire déjà connus. Contenu: utilisation des axiomes d'un espace vectoriel de dimension 2 sur le corps des nombres réels pour démontrer divers théorèmes de géométrie affine plane. Utilisation d'une forme quadratique définie positive pour formaliser la notion d'angle et de longueur et démontrer divers théorèmes de géométrie métrique réelle. Généralisation au cas d'une géométrie affine sur un corps quelconque en particulier un corps fini avec quelques applications aux carrés latins par exemple. Classification des coniques et des quadriques réelles. Problème des fondements da la géornétrie, diverses axiomatiques de la géométrie euclidienne plane et des géométries affine et projective. Apercus sur la géométrie non euclidienne.

Préalables : MAT 243 et MAT 321

MAT 711

3 cr.

Théorie des catégories (3-0-6)

Objectifs : connaître et comprendre les notions et les résultats fondamentaux de la théorie des catégories; savoir les appliquer dans divers domaines des mathématiques.

Contenu : catégories et foncteurs. Morphismes fonctoriels. Équivalences de catégories. Foncteurs représentables, lemme d'Yoneda. Foncteurs adjoints. Limites inductives et projectives. Catégories additives et foncteurs additifs. Catégories abéliennes. Catégories triangulées et catégories dérivées.

MAT 712

3 cr.

Mesure et intégration (3-0-6)

Objectifs : développer l'intégrale de Lebesgue et obtenir ses propriétés.

Contenu : théorie abstraite de l'intégration. Mesures de Bovel et théorème de représentation de Riesz. Espaces LP. Mesures complexes et théorème de Radon-Nikodym. Intégration sur les espaces produits et le théorème de Fubini. Différentiation.

MAT 714

3 ст.

Méthodes numériques (3-0-6)

Objectifs : acquérir une expertise technique et une capacité à utiliser, implanter et dévelogger des méthodes mathématiques basées sur l'arithmétique par intervalles; en conséquence, renforcer sa compréhension des méthodes numériques et mathématiques basées sur l'arithmétique habituelle.

Contenu: méthodes numériques classiques revues et augmentées au moyen de l'analyse par intervalles. Application aux problèmes d'optimisation, notemment sous critères multiples.

MAT 715

Approximation et interpolation (3-0-6)

Objectifs : acquérir une expertise technique et une capacité à utiliser, implanter et développer des méthodes mathématiques basées sur l'approximation et l'interpolation numériques dans le contexte moderne d'interaction homme-machine sans cependant négliger une approche rigoureuse de la théorie.

Contenu : étude de thèmes divers propres à l'approximation et à l'interpolation numériques, comme par exemple : interpolation par fonctions rationnelles, trigonométriques ou splines, lissage polymonial ou exponentiel par morceaux; méthodes de type Everett, Wittaker-Henderson généralisée, à une ou plusieurs variables.

MAT 721

3 c

Algèbre non commutative (3-0-6) Objectif: maîtriser les théorèmes de struc-

Objectif : maîtriser les théorèmes de structures des modules et des catégories de modules.

Contenu : algèbres et modules. Modules simples et le théorème de Jordan-Hölder. Modules semi-simples et les théorèmes de Wedderburn-Artin. Modules indécomposables et le théorème de Krull-Schmidt. Modules projectifs et injectifs. Le produit tensoriel. Notions d'algèbre multilinéaire. Équivalence et dualité des catégories de modules.

MAT 723

3 ...

Topologie générale (3-0-6)

Objectif: acquérir les notions d'une structure topologique et d'une structure uniforme permettant de donner un sens mathématique aux notions intuitives de voisinage, de limite, de continuité et de continuité uniforme.

Contenu: structures topologiques. Convergence de suites généralisées et axiomes de séparation. Fonctions continues. Espaces topologiques produits et topologie quotient. Plongement et métrisabilité. Espaces topologiques compacts et théorème de Tychonôf. Compactification de Stone-Cech. Structures uniformes et complétion. Espaces uniformes métrisables et théorème de Baire.

MAT 728

3 cr.

Sujets choisis en algèbre (3-0-6)

Objectif : se familiariser avec un domaine de l'algèbre privilégié par des travaux de recherche récents.

Contenu : le sujet traité dépend de l'intérêt des étudiantes et des étudiants et des personnes ressources au Département.

MAT 729

_

Algèbre commutative et géométrie algébrique (3-0-6)

Objectifs: s'initier aux concepts fondamentaux de l'algèbre commutative et de la géométrie algèbrique affine. Être capable d'en tier des applications à la théorie des nombres et à la théorie des codes.

Contenu: anneaux commutatifs et leurs modules. Localisation: idéaux premiers, ractions d'un idéal, anneaux et modules de fractions, anneaux locaux. Dépendance entière: clôture intégrale, théorème de montée. Anneaux et modules noethériens, anneaux de polynômes sur un anneau noethérien. Ensembles algébriques afrè ductibles et idéaux premiers, propriétés des courbes planes, dimension des variétés. Applications.

MAT 731

3 cr.

Groupes et représentations des groupes (3-0-6)

Objectifs: connaître et comprendre la structure des groupes finis; acquérir les éléments de la théorie des représentations des groupes, ainsi que les notions de groupes libres et de produits libres.

Contenu: groupes finis, les théorèmes de Sylow, groupes résolubles, groupes nilpotents, extensions de groupes, groupes libres et produits libres de groupes, représentations linéaires des groupes finis, caractères, représentations de dimension un, représentations induites.

MAT 736

3 cr.

Aigèbre homologique (3-0-6)

Objectifs: connaître et maîtriser les techniques homologiques de calcul algébrique; savoir les appliquer dans divers domaines de l'algèbre, de la topologie algébrique ou de la géométrie algébrique.

Contenu: catégories et foncteurs, anneaux et modules. Les foncteurs Hom et produit tensoriel, exactitude et adjonction. Modules libres, projectifs et injectifs. Anneaux définis par leurs propriétés homologiques. Foncteurs dérivés, foncteurs d'extension et de torsion. Dimensions homologiques de modules et d'anneaux. Homologie et cohomologie des algèbres.

MAT 741 3 cr.

Géométrie combinatoire (3-0-6)

Objectifs: être capable de conneître les concepts-clé reliés à une notion très générale d'indépendance ainsi que les techniques d'ordre et de dénombrement associées, de reconnaître lors d'exposés et de travaux ces concepts dans différentes situations concrètes venant de l'algèbre, de la géométrie, de la combinatoire, des graphes et de l'informatique, de les exploiter et d'en tirer les conséquences naturelles dans tous les cas simples et dans la majorité des cas relativement complexes.

Contenu: treillis distributits et modulaires, théorème de Birkhoff. Treillis géométriques et matroïdes. Fermetures, bases, circuits, dépendance. Matroïdes vectoriels et graphiques. Morphismes et morphismes forts. Algorithmes gloutons et matroïdes, greedoïdes. Fonctions de Möbius, algèbre d'incidence. Applications à la combinatoire, aux graphes et à l'algorithmique.

MAT 745 3 cr.

Analyse fonctionnelle I (3-0-6)

Objectifs: maîtriser les concepts et acquérir les notions de base en analyse fonctionnelle; connaître les théorèmes fondamentaux et être capable de les appliquer dans différents domaines de l'analyse mathématique.

Contenu: espaces de Hilbert, espaces de Banach, algèbres de Banach. Étude particulière de l'algèbre des opérateurs sur un espace de Hilbert. Espace de Banach des fonctions à variation bornée et intégrale de Stiettjes. Fonctionnelles linéaires. Théorème de représentation de Riesz. Théorèmes de Hahn-Banach, de la borne uniforme et du graphe fermé. Topologies faibles. Convexité: théorèmes de séparation, inégalité de Jensen, théorème de Krein-Milman.

MAT 748

3 cr.

3 cr.

Sujets cholsis en analyse (3-0-6)

Objectif : se familiariser avec un domaine de l'analyse privilégié par des travaux de recherche récents.

Contenu : le sujet traité dépend de l'intérêt des étudiantes et des étudiants et des personnes ressources au Département.

MAT 749

Équations aux dérivées partielles (3-0-6)

Objectifs: s'initier aux notions fondamentales de la théorie des équations aux dérivées partielles et en connaître les résultats classiques.

Contenu: transformée de Fourier dans R° distributions. Problème de Cauchy et théorème de Cauchy-Kovalevska. Étude d'équations classiques: équations de Laplace, de Poisson, de la chaleur et des ondes.

MAT 781 3 cr.

Théorie des codes (3-0-6)

Objectif : voir un large éventail de méthodes et de résultats.

Contenu: codes linéaires, codes non-linéaires, matrices de Hadamard, configurations combinatoires et codes de Golay, codes duaux et distribution des poids, théorème de MacWilliams, les quatre paramètres fondamentaux d'un code, codes cycliques, codes BCH, codes de Reed-Solomon et de Justesen, codes de Reed-Muller, codes résidu-quadratiques, bornes sur la grosseur d'un code, codes autoduaux et théorie des invariants.

MAT 793 4 cr.

Activités de recherche l

Objectif : mettre en pratique la méthodologie des premières étapes de la recherche scientifique.

Contenu : le travail de la candidate ou du candidat comporte les étapes suivantes : recherche bibliographique permettant de situer son projet de recherche par rapport aux recherches existantes, définition d'une problématique de recherche, détermination des hypothèses de travail, élaboration de la méthodologie à être utilisée. À la fin de cette activité, l'étudiante ou l'étudiant doit déposer un plan préliminaire de sa recherche.

MAT 794 Activités de recherche II

4 cr.

Objectif : mettre en pratique la méthodologie des dernières étapes de la recherche scientifique.

Contenu : le travail de la candidate ou du candidat comporte les étapes suivantes : précsion de la problématique de recherche et des hypothèses de travail, poursuite de la réalisation du projet. Au terme de l'activité, l'étudiante ou l'étudiant est autorisé à rédiger son mémoire.

MAT 795 3 cr.

Séminaire de maîtrise

Objectifs : critiquer et évaluer des présentations scientifiques; réaliser une présentation orale

Contenu: le travail de la candidate ou du candidat comporte les étapes suivantes: participation à un séminaire de recherche dans son domaine, critique et évaluation des présentations, deux prestations par étudiante ou par étudiant.

MAT 796

7 cr.

Présentation de mémoire

Objectif : exposer et défendre un travail de recherche.

Contenu: présentation du contenu du mémoire lors d'un séminaire public. Cet exposé a lieu au plus tard au moment du dépôt official

MAT 797 12 cr.

Mémoire

orale.

Objectif: écrire un mémoire de maîtrise. Contenu: rédaction d'un mémoire décrivant les résultats obtenus au cours d'activités de recherche et démontrant l'acquisition d'aptitudes à poser un problème, à en faire l'analyse et à proposer des solutions appropriées.

MAT 801 3 cr.

Séminaire de recherche I (1-2-6)

Objectifs: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

MAT 802 3 cr.

Séminaire de recherche II (1-2-8)

Objectifs : critiquer et évaluer des présentations scientifiques; réaliser une présentation

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

MAT 803 3 c

Séminaire de recherche (il (1-2-6)

Objectifs: critiquer et évaluer des présentations scientifiques; réaliser une présentation orale.

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

MAT 804 3 cr

Séminaire de recherche IV (1-2-6)

Objectifs : critiquer et évaluer des présentations scientifiques; réaliser une présentation

Contenu: présentation d'au moins un séminaire par la candidate ou le candidat. Critique et évaluation des présentations offertes par les collègues.

MAT 813 3 cr.

Topologie algébrique (3-0-6)

Objectif: approfondir les notions reliées à la topologie vues au cours de premier cycle. Contenu: propriétés élémentaires des complexes simpliciaux; subdivisions. Homologies simpliciale et singulière. Invariance. Équivalence de ces homologies dans le cas des polyèdres. Suites de Mayer-Vietoris. Applications: les espaces R°, théorèmes de points fixes, théorème de la courbe de Jordan.

MAT 821

Représentations des algèbres (3-0-6)

Objectifs: connaître les méthodes modernes de théorie des représentations des algèbres de dimension finie sur un corps; acquérir le plus large éventail possible de résultats et de

methodes.

Contenu: carquois d'une algèbre, représentations d'algèbres héréditaires, théorie d'Auslander-Reiten, ensembles partiellement ordonnés et catégories d'espaces vectoriels, revêtements d'une algèbre, algèbres autoinjectives, théorie de l'inclinaison.

MAT 845

3 cr.

3 cr.

Analyse fonctionnelle II (3-0-6)

Objectif: approfondir les notions vues au premier cours d'analyse fonctionnelle.

Contenu: théorie spectrale des opérateurs: spectre, calcul opérationnel, théorème de la décomposition spectrale, opérateurs auto-adjoints, exemples et applications. Algèbres de Banach: homomorphisme, idéaux maximaux, l'algèbre de groupe L'(G) où G est un groupe topologique abélien localement compact muni de sa mesure de Harr. Théorie des distributions, distributions tempérées et transformées de Fourier.

MAT 847

3 cz.

Variétés différentiables et groupes de Lie

Objectifs: acquérir une vue synthétique de la géométrie différentielle, de la topologie et de l'algèbre tout en se familiarisant avec des outils applicables à divers domaines des mathématiques et de la physique moderne.

Contenu : rappel sur le calcul différentiel des fonctions è plusieurs variables réelles. Notion de variété différentiable et exemples. Variété produit. Espaces vectoriels tangents. Applications différentiables. Différentielle d'une application et règle de chaîne. Sousvariétés, difféo-morphismes et théorème d'inversion locale. Champs de vecteurs et algèbre de Lie. Systèmes différentiels et théorème de Frobenius. Notion de groupe de Lie et exemples. Caractérisation et homomorphisme de groupes de Lie. Algèbre de Lie d'un groupe de Lie. Sous-groupes à un paramètre, application exponentielle et coordonnées canoniques. Détermination d'un groupe de Lie par son algèbre de Lie et formules de Campbell-Hausdorff. Sous-groupe de Lie et groupe linéaire général GL(n,R). Groupe linéaire adjoint.

MAT 895

41 cr.

Activités de recherche et séminaire

MAT 897 12 cr.

Examen général

MAT 899 25 cr.

Thèse

MCB

MCB 100

3 cr.

Microbiologie (3-0-6)

Objectifs: acquérir les connaissances de base sur les microorganismes. Pour les étudiantes et les étudiants de la maîtrise en environnement, le cours vise à leur permettre de comprendre le rôle des microorganismes en environnement.

Contenu: notions générales sur les microorganismes. Structure, culture et propriétés des bactéries. Notions de base sur le contrôle de l'expression génétique des bactéries. Structure et cycle de croissance des virus animaux et bactériens. Méthode de contrôle des microorganismes: agents physiques, agents chimiques et antibiotiques. Microbiologie appliquée: sol, air, eau, aliments.

MCB 101

1 cr.

Microbiologie - Travaux pratiques (0-2-1)

Objectif: acquérir une connaissance des méthodes usuelles de manipulations et de culture des microorganismes.

Contenu: utilisation du microscope, coloration de bactéries tuées, culture aseptique, influence de diverses composantes du milieu sur la croissance microbienne.

Antérieure : MCB 100

MCB 600

1 cr.

3 cr.

Séminaire de microbiologie (1-0-2)

Objectifs: apprendre à effectuer une présentation scientifique devant un auditoire, à évaluer et à être évalué.

Contenu: présentation de l'étudiante ou de l'étudiant. Évaluation et participation de l'étudiante ou de l'étudiant aux présentations des collègues.

Préalable : avoir obtenu 55 crédits du programme de 1^{er} cycle en biologie

MCR 604

Physiologie et génétique microbienne (3-0-8)

Objectif: connaître de façon approfondie le métabolisme microbien et ses implications biomédicales, industrielles et environnementales.

Contenu: génétique: le génome bactérien; les échanges génétiques chez les procaryotes; structure d'un gène procaryote; les bases du génie génétique. Physiologie: croissance des population microbiennes; nutrition; catabolisme; respiration aérobie; autotrophisme; processus anaérobies; oxydations incomplètes. Régulation des processus physiologiques: niveaux moléculaires; régulation de la transcription; phénomènes de régulation globale; répression catabolique; chimiotactisme; différenciation physiologique et morphologique.

Préalables : (BCM 104 ou BCM 318) et MCB 100

Concomitante: GNT 302

MCB 505

1 cr.

Physiologie et génétique microblenne -Travaux pratiques (3-0-6)

Objectifs: comprendre et appliquer des méthodes relatives à la manipulation physiologique des microorganismes.

Contenu : réalisation de deux projets impliquant le métabolisme microbien par sélection de mutants et l'isolement et la caractérisation de microorganismes selon leurs fonctions enzymatiques particulières.

Concomitante: MCB 504

MCR SOR

3 cr.

Microbiologie clinique (3-0-6)

Objectif : comprendre l'importance des microorganismes dans la pathologie humaine et animale ainsi que les principes de la détection et de l'identification de microorganismes pathogènes.

Contenu : précautions essentielles à prendre dans la manipulation du matériel potentiellement pathogène : collecte aseptique des échantillons, contrôle de la qualité des milieux de culture, contrôle de la stérilité, déchets biomédicaux. Pour chaque espèce de microorganisme couverte dans ce cours : description du microorganisme, mode de transmission et épidémiologie, mécanisme d'action pathogène, isolement et identification, mode de prévention.

Présiable : MCB 100

MCB 509

Microbiologie clinique - Travaux pratiques (0-2-1)

Objectifs : être en mesure d'expérimenter certains groupes de microorganismes couverts dans le cours MCB 508; comprendre les principes des techniques microbiologiques couramment utilisées dans les laboratoires d'identification des microorganismes; maîtriser correctement et avec les méthodes aseptiques, les tests classiques et modernes, essentiels à l'identification de souches inconnues; comprendre le rôle de chaque élément composant les milieux sélectifs et les milieux différentiels; apprendre à tenir à jour un cahier de laboratoire et à se conformer à un agenda d'expériences.

Contenu : isolement et croissance sur milieu d'enrichissement et sur milieux sélectifs de souches de microorganismes d'importance clinique; méthodes d'observation et d'identi-

Préalable : MCB 101 Concomitante: MCB 508

MCR S10

3 cr

Microbiologie Industrielle (3-0-6)

Objectifs : connaître les procédés microbiologiques à grande échelle et particulièrement la sélection et l'amélioration des microorganismes industriels et les méthodes de culture en bioréacteur; être capable d'appliquer les connaissances sur l'ensemble des étapes d'un procédé biotechnologique à divers domaines (agro-alimentaire, pharmaceutique, chimique).

Contenu : les microorganismes : isolement et sélection de souches; amélioration de souches. Les procédés : les problèmes liés à la fermentation à grande échelle; la stérilisation; l'agitation et l'aération, les processus anaérobies; les processus en phase solide; le principe de transfert de masse; culture en vrac, vrac noum et en continue. Guide de la bioindustrie: survol des principales branches de la bio-industrie. Présentation détaillée de trois processus de microbiologie industrielle : processus lié à l'industrie agro-alimentaire; processus fournissant une matière première pour l'industrie chimique; processus fournissant des produits à haute valeur ajoutée.

Préalable : MCB 504

MCB 512 2 cr.

Adaptations microblennes (2-0-4)

Objectifs : connaître et comprendre les adaptations physiologiques nécessaires à la vie microbienne dans les milieux particuliers et raisonner l'utilisation des microorganismes comme agents de dépollution.

Contenu : la vie microbienne en anaérobiose : réduction des nitrates et des sulfates, méthanogénèse, bactéries acétogènes. Autotrophisme : bactéries photosynthétiques et bactéries chimiolithotrophes. Bactéries et métaux : transformation des métaux, résistance aux métaux et sidérophores. Utilisation de sources de carbone et d'azote inhabituelles : les méthylotrophes (sources de carbone C-1). Utilisation de l'oxyde de carbone (CO). Dégradation des polluants environnementaux : hydrocarbures, composés aromatiques, composés halogénés, etc. Génération et utilisation de l'hydrogène. Environnements extrêmes: thermophiles, psychrophiles, osmophiles, acidophiles, alcalophiles, barophiles, xénophiles et oligotrophes.

Préalable : MCB 504

MCR 514

2 cr.

Écologie microblenne (2-0-4)

Objectifs : connaître et comprendre les notions de base en écologie microbienne; analyser les facteurs abiotiques et biotiques déterminant la distribution des populations microbiennes.

Contenu : principes généraux d'écologie microbienne. Les microorganismes dans la biosphère : cycle du carbone, de l'azote, du phosphore et du soufre. Méthodes propres à l'étude des populations microbiennes (décomptes; respirométrie; microscopie, etc.). Les relations entre les bactéries : commensalisme, symbiose et antibiose. Consortiums microbiens. Microbiologie du sol. Compostage. Microbiologie des eaux. Biofilms. Éaux usées, eau potable : microbiologie et traitement. Microbiologie de l'air. Biofiltration de l'air. Microbiologie végétale : lichens, symbioses végétales, bactéries glacogènes et notions de lutte biologique. Microbiologie animale. Animaux sans germes et gnotobiotiques. Biodiversité microbienne et principes d'évolution microbienne.

Préalable : MCB 100

MCR 523

2 cr

Systématique microbienne (0-8-0)

Objectif: puiser dans les connaissances acquises de cours antérieurs et dans des ouvrages pertinents des concepts permettant de mener à bonne fin un projet de recherche sous forme d'identification de souches bactériennes inconnues.

Contenu : établissement d'un protocole tout en tenant compte de contraintes économiques; préparation des milieux de culture essentiels à l'atteinte des buts du projet; effectuer les tests d'identification et en arriver à une identification complète des inconnus: présenter, dans un rapport de session et lors d'une conférence, le déroulement des travaux effectués, les problèmes rencontrés et les solutions apportées. Ce cours est réservé exclusivement aux étudiantes et aux étudiants de la concentration microbiologie.

Préalable : MCB 509

MCB 625

A cr

Initiation à la recherche en microbiologie (0-11-1)

Objectif: perfectionner un cheminement individuel avancé dans un axe de recherche spécialisé de la microbiologie.

Contenu : réalisation d'un projet de recherche avancé en intégrant les connaissances avec l'aide de techniques avancées. Rédaction d'un rapport.

Préalable : avoir obtenu 55 crédits du proaramme

> MCB 710 1 cr.

Biologie des actinomycètes (1-0-2)

Objectif: se familiariser avec les actinomycètes en tant qu'objets de recherche fondamentale et microorganismes industriels. Contenu : les actinomycètes : taxonomie, physiologie, écologie. Méthodes classiques d'étude des actinomycètes. Biologie moléculaire et génie génétique : problèmes spécifiques aux actinomycètes. La biologie du développement. Applications industrielles : production d'antibiotiques et d'enzymes. Orientations de la recherche mondiale sur les actinomycètes.

MCB 720

Sujets spéciaux (microbiologie) (1-0-2)

Objectif : acquérir une connaissance approfondie de thèmes spécialisés en microbiologie, avec un accent sur les développements récents de cette discipline.

Contenu : les thèmes couverts sont choisis dans le domaine de la microbiologie industrielle, environnementale ou alimentaire.

MQG

MQG 342

3 cr.

Gestion des opérations

Obiectif: se familiariser avec la gestion des opérations dans son sens large (entreprises de service et entreprises manufacturières). Contenu : prevision de demande, planification à long et à court terme, gestion des achats et des stocks, contrôle de la qualité, contrôle de la main-d'oeuvre, maintenance, choix d'emplacement et d'aménagement. Insistance sur l'aspect pratique plutôt que sur l'aspect théorique.

Concomitante: ROP 641

PBI

PBI 504

2 cr.

Séminaire de biotechnologie (1-0-5)

Objectifs: savoir effectuer une recherche bibliographique sur un sujet spécialisé relié à la biotechnologie et être capable de présenter oralement l'information scientifique à un auditoire non spécialisé. Apprendre à poser des questions.

Contenu : présentation d'un séminaire. Assistance aux présentations des étudiantes et des étudiants. Participation durant la période des questions, discussion et appréciation.

Préalable : avoir obtenu 55 crédits du programme de biologie

PRI 700

1 cr.

Séminaire de recherche I (1-0-2)

Objectif : apprendre à présenter, à discuter et à soutenir un sujet de recherche en biologie devant un auditoire de collègues, de pro-fesseures et de professeurs.

DRI 702

1 cr.

Séminaire de recherche il (1-0-2)

Objectif : apprendre à présenter, à discuter et à soutenir un sujet de recherche en biologie devant un auditoire de collègues, de pro-fesseures et de professeurs.

PBI 708 1 cr.

Séminaire de recherche IV (1-0-2)

Objectif : apprendre à présenter, à discuter et à soutenir un sujet de recherche en biologie devant un auditoire de collègues, de pro-fesseures et de professeurs.

PBI 708

Séminaire de recherche V (1-0-2)

Objectif : apprendre à présenter, à discuter et à soutenir un sujet de recherche en biologie devant un auditoire de collègues, de professeures et de professeurs.

PRI 721 1 cr.

Sujets spéciaux (biotechnologie) (1-0-2)

Objectif: acquérir une connaissance approfondie de thèmes spécialisés en biotechnologie, avec un accent sur les développements récents de cette discipline.

Contenu : les thèmes couverts sont choisis dans le domaine de l'application industrielle ou biomédicale, du génie génétique et de la biologie moléculaire.

PBI 724 2 cr.

Interactions scientifiques I (2-0-4)

Objectifs: choisir des travaux de recherche personnels ou publiés en vue de les présenter; préparer un exposé; présenter oralement. avec riqueur scientifique, des résultats de recherche spécialisés à un auditoire spécialisé; assister de façon interactive aux présentations de ses pairs, professeures et professeurs; acquérir des connaissances dans divers domaines spécialisés de la biologie.

Contenu : présentation des résultats scientifiques, qu'ils soient obtenus par l'étudiante ou par l'étudiant dans le cadre de son programme de recherche ou à partir d'articles récents de la littérature. Discussions interactives entre les étudiantes et les étudiants inscrits au cours et les professeures et pro-fesseurs responsables. Chaque étudiante ou étudiant devra faire deux présentations par session. La présentation d'articles de la littérature scientifique ne devra pas être dans son domaine de recherche immédiat. Ils devront assister à toutes les présentations organisées dans le cadre de ce cours, soit un total d'au moins 30 présentations. Ce cours est réservé aux étudiantes et aux étudiants de maîtrise en biologie.

PRI 824

Interactions scientifiques II (2-0-4)

Obiectifs : choisir des travaux de recherche personnels ou publiés en vue de les présenter; préparer un exposé; présenter oralement, avec riqueur scientifique, des résultats de

recherche spécialisée à un auditoire spécialisé; assister de facon interactive aux présentations de ses pairs, professeures et professeurs; acquérir des connaissances dans divers domaines spécialisés de la biologie.

Contenu : présentation des résultats scientifiques, qu'ils soient obtenus par l'étudiante ou par l'étudiant dans le cadre de son programme de recherche ou à partir d'articles récents de la littérature. Discussions interactives entre les étudiantes et les étudiants inscrits au cours et les professeures et les professeurs responsables. Chaque étudiante ou étudiant devra faire deux présentations par session. La présentation d'articles de la littérature scientifique ne devra pas être dans son domaine de recherche immédiat. Ils devront assister à toutes les présentations organisées dans le cadre de ce cours, soit un total d'au moins 30 présentations. Ce cours est réservé aux étudiantes et aux étudiants de doctorat en biologie.

PHI

PHI 333

3 cr.

Philosophie de la biologie

Objectif: avoir un aperçu des grandes controverses ayant entouré le développement de la biologie, qu'elles soient épistémologiques (structure de la théorie de l'évolution) ou qu'elles mettent en relief les rapports entre la science et la société (darwinisme social, etc.). Contenu : quelques grandes problématiques : la génération spontanée, la génération et la classification. L'après Darwin : Mivart, Jenkin, Kelvin, etc. Historique et structure de la théorie de l'évolution. La Nouvelle Synthèse. Falsifiabilité de la théorie de l'évolution. Les forces évolutives. La controverse sur les niveaux de sélection. L'explication en biologie. Le darwinisme social et l'eugénique.

PHO

PHQ 110 3 cr.

Mécanique I (3-1-5)

Objectifs : se familiariser avec les lois et les grands principes gérant les phénomènes physiques simples de la mécanique classique. S'initier à leur formulation mathématique. Contenu: univers euclidien, référentiels inertiels ou accélérés, forces fictives, transformation galiléenne. Mouvement d'objets soumis aux forces de gravité ou de nature électro-magnétique. Énergies cinétique et potentielle, travail, puissance. Conservation de l'énergie, de la quantité de mouvement et du moment cinétique. Centre de masse, énergie interne. Invariance de la vitesse de la lumière, effet Doppler, transformation de Lo-

rentz, dilatation du temps et contraction de Concomitantes: MAT 193 et (MAT 194 ou MAT 195)

PHQ 120

l'espace.

3 cr.

Optique et ondes (3-1-5)

Objectifs: approfondir l'optique géométrique à partir du principe de Fermat. S'initier à l'optique ondulatoire par l'étude des phénomènes de polarisation, d'interférence et de diffraction

Contenu : principe de Fermat, réfraction et réflexion; approximation de Gauss, systèmes optiques centrés composés de plusieurs lentilles ou de miroirs; formulation matricielle; stigmatisme, limites de l'optique géométrique. Ondes lumineuses, polarisation; lames quart-onde et demi-onde; interférence par deux ou plusieurs sources, principe de Huygens et diffraction, applications modernes.

Concomitante : MAT 193

PHO 210

3 cr.

Phénomènes ondulatoires (3-1-5)

Objectifs : s'initier à la nature ondulatoire de plusieurs phénomènes physiques. Comprendre les aspects universels du mouvement vibratoire dans différents domaines de la physique tels la mécanique, l'électricité et l'électromagnétisme.

Contenu : oscillateur harmonique libre, amorti et forca; solutions transitoire et stationnaire. Systèmes à un ou plusieurs degrés de liberté; modes propres et ondes stationnaires; superposition; séries et intégrales de Fourier; relations de dispersion; impulsions; paquets d'ondes et vitesse de groupe; impédance, ré-flexion et transmission d'ondes. Applications à des systèmes mécaniques et électriques.

Concomitante: MAT 194 ou MAT 195

PHQ 220

Électricité et magnétisme (3-1-5)

Objectifs : se familiariser avec les notions de base associées aux phénomènes électromaanétiques et comprendre les lois locales formulées avec les opérateurs mathématiques. Contenu : loi de Coulomb, théorème de Gauss et applications. Opérateurs mathématiques. Les conducteurs à l'équilibre. Loi de Biot et Savart, applications. Théorème d'Ampère, loi de Faraday. Les équations de Maxwell.

Préalable : MAT 194 ou MAT 195

PHQ 260 Travaux pratiques I (0-5-4)

3 cr.

3 cr.

Objectifs: s'initier à l'instrumentation scientifique utilisée pour des mesures physiques. Rendre compte par écrit, de manière succincte, des résultats d'une expérience.

Contenu: instrumentation: oscilloscope, multimètre, bloc d'alimentation, amplificateur synchrone, intégrateur à porte et ordinateur. Circuits oc et ca : loi d'Ohm, diviseur de potentiel, théorème de Thévenin, lois de Kirchoff, pont d'impédances, solutions transitoire et stationnaire de circuits RLC, résonance, cons-tante de temps, diodes. Phénomènes physiques : transition de phase magnétique, détection d'un signal optique, propagation ultrasonore, loi d'induction de Faraday.

Concornitantes: (MAT 194 ou MAT 195) et PHQ 210

PHQ 310

Mécanique II (3-1-5)

Objectifs: se familiariser avec les formulations lagrangienne et hamiltonienne de la mécanique classique. Appliquer ces formalismes à la solution de problèmes simples et concrets.

Contenu : revue de mécanique newtonienne. Coordonnées généralisées; principes d'Alembert; équations de Lagrange; applications. Théorèmes de conservation; hamiltonien;

3 cr.

équations de Hamilton; calcul des variations. Problèmes à deux corps, force en 1/1?; diffusion, chaos. Mécanique des corps rigides; théorème d'Euler; tenseur d'inertie; axes principaux; équations du mouvement d'Euler et de Laorance.

Préalables : MAT 193, MAT 291 et PHO 110

PHO 330

3 cr.

Mécanique quantique I (3-1-5)

Objectifs : s'initier à la description quantique des phénomènes physiques à l'échelle microscopique et se familiariser avec les concepts propres à cette description.

Contenu: effets photoélectriques et Compton, dualité onde-corpuscule, onde de probabilité, fonction d'onde, paquets d'ondes, principe d'incertitude, quantification de Bohr-Sommerfeld. Équation de Schrödinger, puits de potentiel. Formalisme de Dirac: bases, kets, bras, représentations, valeurs, vecteurs propres. Systèmes à deux niveaux, spin ½, oscillateur harmonique, opérateurs de création et d'annihilation, polynômes d'Hermite.

Préalable : PHQ 210 Concomitante : PHQ 110 Antérieures : MAT 291 et MAT 297

PHQ 340

3 cr

Physique statistique I (3-1-5)

Objectifs: acquérir les notions fondamentales de probabilités et de statistiques. Apprendre les notions de base de statistique. Contenu: principes de la thermodynamique, variables thermodynamiques, équilibre, température, transformations des gaz parfaits. États microscopique et macroscopique; probabilités; fonction de distributions; entropie;

Concomitante : PHQ 330 Antérieure : MAT 291

fonction de partition. Applications.

PHQ 350

3 cr.

Électronique (3-1-5)

Objectifs : se familiariser aux circuits utilisés en électronique analogique et numérique. Concevoir et utiliser de tels circuits.

Contenu: jonction pm. Transistor bipolaire et configurations principales dans les circuits. Transistor à effet de champ. Fabrication des circuits. Amplificateurs différentiels et opérationnels. Étude de circuits typiques. Réponse en fréquence, réponse impulsionnelle et analyse de signaux.

Préalables : MAT 297 et PHQ 260

PHO 360

3 cr.

Travaux pratiques II (0-5-4)

Objectif: acquérir les habiletés nécessaires à l'étude en laboratoire de systèmes physiques et à l'analyse de résultats expérimentaux.

Contenu: expériences touchant les grands domaines de la physique tels que la physique nucléaire, la physique des solides, l'optique, la physique atomique, la physique des gaz et la physique des ondes. Mise en évidence de phénomènes fondamentaux, tels que les effets quantiques de dualité, de spin et de niveaux d'énergie. Apprentissage des techniques de détection synchrone, le vide, les basses températures et la détection de particules à haute énergie. Le contenu de PHO 360 est partagé avec PHO 460.

Préalable : PHQ 260

PHO 399

Histoire des sciences (3-0-8)

Objectif : rendre l'étudiante ou l'étudiant conscient de l'évolution de la pensée de l'être humain à travers les âges par l'étude de l'histoire des sciences.

Contenu : les sciences de l'antiquité et le rationalisme. Le Moyen-Âge et l'intégration des sciences dans la doctrine chrétienne. Les 16° et 17° siècles, la naissance des sciences expérimentales. Les 18° et 19° siècles, les constructions des fondements des sciences. La science moderne.

PHQ 405

3 cr.

2 --

Méthodes numériques et simulations (3-1-5)

Objectifs: maîtriser diverses méthodes numériques et techniques de simulation afin de solutionner des problèmes réalistes qui ne peuvent être résolus par des méthodes analytiques. Résoudre des problèmes concrets en faisant appel à plusieurs notions de physique acquises dans d'autres cours. Contenu: précision et stabilité des algorith-

Contenu: précision et stabilité des algorithmes. Organisation d'un programme. Problèmes matriciels, décomposition LU, inversion et diagonalisation des matrices, matrices éparses. Traitement des données, lissages. Problèmes différentiels, extrémisation, gradient conjugué, programmation linéaire. Problèmes intégraux, quadratures gaussiennes, transformées de Fourier rapide, méthode de Runge-Kutta, problèmes aux limites. Simulations déterministes et stochastiques, dynamique moléculaire, méthode Monte Carlo.

Préalables : (IFT 148 ou IFT 159) et PHQ 340 Concomitante : MAT 297

PHQ 420

3 cı

Électrodynamique et relativité (3-1-5)

Objectifs: approfondir les lois de l'électromagnétisme à l'aide d'un formalisme mathématique avancé. Comprendre les conséquences du principe de la relativité restreinte sur la mécanique et l'électromagnétisme.

Contenu: loi de Gauss, potentiel, équation de Poisson, conducteurs, multipôles, diélectriques. Loi d'Ampère, potentiel vecteur, dipôles magnétiques, aimantation. Équations de Maxwell, potentiels électromagnétiques jauges, équation d'onde, énergie et impulsion. Rayonnement dipolaire. Transformation de Lorentz, intervalle, quadrivecteurs et tenseurs, mécanique relativiste. Quadripotentiel, tenseur électromagnétique, transformations des champs, lagrangien et hamiltonien.

Préalables : MAT 291 et PHQ 220

Concomitante : MAT 297

PHQ 430

3 cr.

Mécanique quantique (I (3-1-5)

Objectifs: approfondir les concepts de base et se familiariser avec les outils mathématiques de la mécanique quantique. Appliquer le formalisme de Dirac à des systèmes microscopiques simples.

Contenu : équation de Schrödinger, formalisme de Dirac, observables, produit tensoriel, postulats de la mécanique quantique. Systèmes à deux niveaux (molécules NH₃, H₂, H₃, ...), formule de Rabi. Perturbations stationnaires, applications. Moment cinétique, harmoniques sphériques. Potentiel central et atome d'hydrogène, tableau périodique, effet Stark.

Préalable : PHQ 330

PHQ 440 Physique statistique II (3-1-5)

3 c

3 cr.

Objectifs: approfondir la physique statistique; maîtriser les fondements de deux principales distributions statistiques; appliquer ces statistiques à l'étude des gaz parfaits quantiques et classiques.

Contenu : ensembles statistiques : ensembles canonique, grand canonique et isotherme-isobare, fonctions de partition, fonctions de distribution de Bose-Finstein, Fermi-Dirac et de Maxwell-Boltzmann, Gaz parfaits quantiques de bosons : loi de radiation de Planck, chaleur spécifique des solides, condensation de Bose-Einstein. Gaz parfaits quantiques de fermions ; gaz dégénéré, énergie de Fermi, gaz de Fermi aux basses températures. Gaz parfaits classiques : théorème d'équipartition, entropie, loi des gaz parfaits. Applications : rayonnement fossile laser, hélium superfluide, paramagnétisme de Pauli, ferromagnétisme, transition de phase gaz-liquide. Système hors d'équilibre : équation de Boltzmann.

Préalable : PHQ 340

DUO 480

Travaux pratiques III (0-5-4)

Objectif: acquérir les habiletés nécessaires à l'étude en laboratoire de systèmes physiques et à l'analyse de résultats expérimentaux.

Contenu: expériences touchant les grands domaines de la physique els que la physique nucléaire, la physique des solides, l'optique, la physique atomique, la physique des gaz et la physique des ondes. Mise en évidence de phénomènes fondamentaux, tels que les effets quantiques de dualité, de spin et de niveaux d'énergie. Apprentissage des techniques de détection synchrone, le vide, les basses températures et la détection de particules à haute énergie. Le contenu de PHO 460 est partagé avec PHO 360.

Préalable : PHQ 260

Méthodes de physique théorique (3-1-5)

Objectif : comprendre et savoir appliquer cer-

taines méthodes mathématiques de la physi-

Contenu : fonctions d'une variable complexe : calcul des résidus; évaluations d'intégrales; prolongement analytique; fonctions gamma et bête d'Euler. Équations différentielles linéaires du deuxième ordre; fonctions hypergéométriques confluentes; fonctions de Bessel; fonctions de Legendre. Application à la solution d'équations différentielles d'intérêt physique.

Préalables : MAT 291 et MAT 297

PHQ 525

3 cr.

Ondes électromagnétiques (3-1-5)

Objectif: être capable d'appliquer les équations de Maxwell à la propagation des ondes électromagnétiques dans divers milieux et à leur rayonnement.

Contenu: équation d'onde, ondes planes, polarisation; réflexion et réfraction; conducteurs, longueur de pénétration; guides d'ondes, cavités. Potentiels retardés et de Liénard-Wiechert, rayonnement par une charge accélérée, rayonnement multipolaire.

diffusion de Rayleigh, antennes. Dispersion dans divers milieux, précurseurs.

Préalable : PHQ 420

PHQ 535

3 ...

Compléments de mécanique quantique

Objectifs : approfondir la mécanique quantique par l'étude de développements récents de la théorie. Intégrer des concepts de la théorie quantique en l'appliquant à divers domaines de recherche contemporaine.

Contenu : limite classique, trajectoires quantiques. Intégrales de chemin, effet Aharonov-Bohm, potentiel gravitationnel, fonction de partition, matrice de transfert. Effets quantiques macroscopiques, états cohérents, superfluidité, supraconductivité. Théorie de la diffusion. Corrélations, approximation de Hartree-Fock, non-séparabilité, inégalités de Bell, implications philosophiques.

Préalable : PHQ 430

PHQ 536

3 cr.

Physique atomique et moléculaire

Objectifs: approfondir la structure atomique et moléculaire et se familiariser avec la spectroscopie optique.

Contenu : spectres d'atomes à un ou deux électrons, tableau périodique. Moment cinétique total, couplage spin-orbite et structure fine, spectres atomiques et règles de sélection pour les transitions optiques, parité, effet Zeeman, effet Stark. Forces chimiques, valences, spectres moléculaires, vibration, effet Raman. Spectres continus et spectres diffus, propriétés électriques et magnétiques des atomes et molécules.

Préalable : PHQ 430

PHO SEE

3 cr.

Physique des composants électroniques (3-1-5)

Objectif: se familiariser avec les principes physiques et les caractéristiques de fonctionnement de composants semiconducteurs utilisés en électronique et en optoélectroni-

que. Contenu : transport électronique, densité d'états, distribution de Fermi-Dirac, concentration de porteurs à l'équilibre, semiconducteurs extrinsèques, propriétés optiques. durée de vie. Jonction p-n : bases physiques du fonctionnement, écarts par rapport au comportement idéal. Étude des diodes Schottky, contacts ohmiques, diodes varactor, Zener, tunnel, LED et photodiodes. Fonctionnement des transistors bipolaires et à effet de champ (MESFET, JFET et MOSFET), mode d'opération, écarts par rapport au comportement idéal. Notions sur quelques composants avancés. CCD, lasers à serniconducteurs, diodes à effet Gunn.

Préalable : PHQ 350

PHQ 560 Travaux pratiques avancés I (0-4-5)

Objectifs: se familiariser avec des techniques

courantes en recherche et développement. Développer les aptitudes nécessaires pour critiquer des résultats expérimentaux dans un rapport de laboratoire détaillé.

Contenu : expériences typiquement rencontrées dans le domaine de la recherche et du développement telles que : spectroscopies Fourier et Mössbauer, effet Hall classique et quantique, résonance paramagnétique électronique et conductivité hyperfréquence, photoluminescence dans les puits quantiques, Shockley-Haynes et photoporteurs, diffraction des rayons X, photolithographie. Le contenu da PHQ 560 est partagé avec PHQ 660.

Préalable : avoir obtenu 45 crédits du programme de physique

PHQ 575 3 cr.

Optique moderne (3-1-5)

Objectif: se familiariser avec des applications modernes en optique (laser, optique non linéaire, optique de Fourier).

Contenu : notions de cohérences spatiale et temporelle, optique de Fourier, holographie, applications aux techniques de lithographie submicronique, caractéristiques du rayonnement laser, pompages optique et électrique, laser à semiconducteur, laser à impulsions courtes, origines des non-linéarités optiques, tenseur de susceptibilité, biréfringences naturelle et induite électriquement (effet Kerr et effet Pockels), phénomènes d'auto-action de la lumière (effet photoréfractif et auto-focalisation lumineuse), processus paramétriques, applications aux modulateurs optiques.

Préalable : PHQ 120

Concomitantes: PHQ 525 et PHQ 585

PHO RRR

Physique du solide (3-1-5)

3 cr.

Objectif: intégrer les grands concepts de l'électromagnétisme, de la mécanique quantique et de la physique statistique en vue d'une description des structures cristallines et électroniques des solides macroscopi-

Contenu : réseaux périodiques. Loi de Bragg, réseau réciproque. Liaisons cristallines, soli des quantiques. Phonons optiques et acoustiques, thermostatique des phonons, processus umklapp. Électrons sans interactions, transport, effet Hall. Bandes d'énergie, approche de liaisons fortes. Semiconducteurs, masse effective, trous et électrons. Surfaces de Fermi et effet de Haas-van-Alphen. Plasmons, polaritons, supraconductivité.

Préalables : PHQ 430 et PHQ 440

PHO A15 3 ...

Relativité générale (3-1-5)

Objectifs: connaître l'espace-temps physique courbé et la théorie de la gravitation d'Einstein; apprendre le langage mathématique nécessaire à la description adéquate de l'espace-temps et à la compréhension des phénomènes gravitationnels.

Contenu : rappel des notions de relativité restreinte; le champ électromagnétique dans l'espace-temps; calcul tensoriel; le tenseur stress-énergie; repère accéléré dans l'espacetemps. Introduction à la géométrie différentielle, déviation géodésique et courbure de l'espace-temps; tenseurs de Riemann et d'Einstein; principe d'équivalence; génération de la courbure par l'énergie-masse; l'équation d'Einstein; correspondance avec la théorie newtonienne. Applications : métriques d'espace-temps sphérique et statique; avance du périhélie, pulsars, trous noirs; évolution de l'univers.

Préalables : PHQ 310 et PHQ 420

PHQ 635

Mécanique quantique III (3-1-5)

Objectifs : compléter sa connaissance des concepts de base de la mécanique quantique et les approfondir en les appliquant à des systèmes quantiques concrets. S'initier aux méthodes de calcul de la mécanique quanti-

Contenu : le spin de l'électron; composition de moments cinétiques; théorie des perturbations stationnaires. L'équation de Dirac; calcul des structures fines de l'atome d'hydrogène. Théorie des perturbations dépendantes du temps; systèmes de particules identiques.

Préalable : PHQ 430

PHO A38

3 ...

3 cr.

Physique subatomique (3-1-5)

Objectif: intégrer les concepts de la mécanique quantique et de l'électromagnétisme en vue d'une description de la physique des hautes énergies et des applications de la physique nucléaire.

Contenu : propriétés globales des noyaux atomiques, modèle en couches, moment magnétique, moment quadripolaire, rotations et vibrations des novaux, symétries et lois de conservation, isospin, parité, conservation de la charge, découverte des particules, accélérateurs et détecteurs, désintégration des particules, spectre de masse, spectres des baryons et de mésons, les quarks, les mésons lourds, états à trois quarks, chromodynamique quantique, liberté asymptotique et confinement, modèle pour les baryons, bosons W et Z, fission nucléaire, réacteurs, fusion nucléaire, fusion dans les étoiles, combustion de l'hélium, combustion explosive, étoiles à neutrons, nucléogénèse.

Préalable : PHQ 430

PHO BBO Travaux pratiques avancés II (0-4-5)

Objectifs : se familiariser avec des techniques courantes en recherche et développement. Développer les aptitudes nécessaires pour critiquer des résultats expérimentaux dans un rapport de laboratoire détaillé.

Contenu: expériences typiquement rencontrées dans le domaine de la recherche et du développement telles que : spectroscopies Fourier et Mössbauer, effet Hall classique et quantique, résonance paramagnétique électronique et conductivité hyperfréquence, photoluminescence dans les puits quantiques, Shockley-Haynes et photoporteurs, diffraction des rayons X, photolithographie. Le contenu de PHQ 660 est partagé avec PHQ 560.

Préalable : avoir obtenu 45 crédits du programme de physique

PHO 675

3 cr. Physique des plasmas (3-1-5)

Objectif: intégrer les concepts de l'électromagnétisme et de la physique statistique en vue d'une description de la physique des gaz ionisés et des applications.

Contenu : théorie des orbites, rayon de giration, dérives du champ B à symétrie axiale, non-uniforme ou courbé, miroir magnétique, ceinture de van Allen. Équation de Bolzmann, moments de l'équation de Boltzmann, dyadique de pression, plasmas froids ou tièdes, linéarisation des équations, oscillations des électrons, fréquence plasma, longueur de Debve: relation de dispersion des électrons, oscillation en présence d'un champ B, ondes E.M. dans un plasma, effets des collisions, ondes O, X, L et R. Pression magnétique, tenseur de pression, fusion nucléaire, équilibre ETL, équation de Seha, approximation couronne, raies atomiques, profil d'une raie, élargissements Doppler et Stark, rediation continue, mesure de la température et de la concentration. Diffusion ambipolaire, recombinaison, amortissement de Landau, équation de Korteweg-deVries, soliton.

Préalables : PHQ 420 et PHQ 440

PHQ 676 3 cr.

Astrophysique (0-3-6)

Objectif: intégrer les connaissances des lois de la physique dans l'analyse de problèmes concrets et contemporains d'astrophysique. Contenu: les techniques et instruments de mesure en astronomie, le système solaire, les étoiles, le milieu interstellaire, la voie lactée, les galaxies et la structure de l'univers.

Préalable : PHQ 440

Antérieures : PHQ 310, PHQ 420 et PHQ 430

PHQ 677

3 cr.

Hydrodynamique et phénomènes non linéaires (3-1-5)

Objectifs: analyser des problèmes d'hydrodynamique en choisissant différentes méthodes de solution: analyse dimensionnelle, solution d'équations aux dérivées partielles, méthodes numériques. Connaître différents aspects de la physique des phénomènes non linéaires et chaotiques.

Contenu: dérivation des équations de l'hydrodynamique, approches lagrangienne et euclérienne. Fluide idéal. Équations d'Euler et de Bernoulli, écoulements irrotationnel et incompressible, ondes. Comportement non linéaire: ondes solitaires et solitons en physique. Fluides visqueux, fluide newtonien et équation de Navier-Stokes, couche limite, nombre de Reynolds, écoulements laminaires, amortissement des ondes. Turbulence et physique du chaos.

Préalables : (IFT 148 ou IFT 159) et PHQ 210 et PHQ 310

PHY

PHY 711

2 01

Séminaire

Sommaire: chaque étudiante ou étudiant, aux 2° et 3° cycles, doit faire à chaque année de scolarité, un exposé d'une heure sur ses travaux de recherche en plus de prendre une part active aux séminaires et colloques du Département de physique.

PHY 731

4 cr.

Mécanique quantique I (4-0-8)

Objectif: comprendre et être capable d'appliquer la mécanique quantique des systèmes ayant un grand nombre de degrés de liberté. Contenu: rappel des principes fondamentaux. Oscillateur harmonique et états cohérents. Symétries et opérateurs unitaires Groupes et moment cinétique. Théorie des perturbations, stationnaires et dépendant du temps, règle d'or. Équation de la diffusion, section efficace. Chaîne d'oscillateurs, champ scalaire. Quantification du champ électromagnétique. Théorème de Noether. Deuxième

quantification (bosons et fermions). Interactions lumière-matière : émission, absorption et diffusion. Approximation de Hartree-Fock. Réseaux cristallins, modèle de Hubbard et de Heisenberg, ondes de spin. Équation de Dirac. Intégration fonctionnelle et relation avec la mécanique statistique.

PHY 741 4 cr.

Physique statistique (4-0-8)

Contenu: revue de la thermodynamique. Fondements de la mécanique statistique. Limite classique de la mécanique statistique. Fluctuations. Mécanique statistique quantique, matrice densité, gaz de fermions et de bosons. Condensation de Bose-Einstein. Supraconductivité. Transition de phases, ordre de la transition, point critique, divergences près du point critique. Transitions de phases de deuxième espèce, théorie de Landau, théorie des champs moyens, scaling et groupe de renormalisation. Magnétisme, modèle d'Ising.

PHY 753

Physique des microstructures

Objectif': maîtriser les connaissances de base en physique des microstructures fabriquées à partir des techniques d'épitaxie et de lithographie modernes.

A cr.

4 er.

Contenu : revue des principales carectéristiques de la structure de bande des semiconducteurs les plus utilisés (Si, Ge, composés III-N). Survol des possibilités offertes par les techniques d'épitaxie et de lithographie modernes. Gaz électronique à dimensionnalité réduite : systèmes à 2D, 1D et 0D, densité d'étets, structure de bande, quantification électrique et magnétique, modifications des propriétés de transport et optiques par rapport au cas 3D, effet Hall quantique, systèmes mésoscopiques. Applications aux cas du laser à hétérostructure et du transistor balistique.

PHY 780 21 cr.

Activités de recherche

PHY 783

Physique de l'état solide (4-0-8)

Objectifs: être capable d'utiliser les outils de la mécanique quantique et approfondir ses connaissances de base en physique du solide.

Contenu : structure cristalline; états électroniques d'un cristal : approximation des liaisons fortes, des ondes orthogonalisées, kep et fonctionnelle de densité, couplage spin-orbite; théorème de la masse effective; dynamique du réseau; thermostatique d'un cristal; effet de champs externes électrique et magnétique : niveaux de Wannier et de Landau, effet tunnel inter-bande, magnéto-oscillation, facteur g; couplages électron-phonon et phonon-phonon : ondes de densité de charge, polaron; transport en régime permanent : conductibilités électrique et thermique, pouvoirs thermoélectriques, effet Hall et magnétorésistance classiques et quantiques; propriétés optiques : polaritons, résonance cyclotron.

PHY 790 11 cr.

Mémoire

PHY 811

Séminaire

Sommaire : présentation du projet de recherche au 3° cycle.

PHY 812

2 cr.

2 cr

Séminaire

Sommaire : présentation d'une communication à un congrès national ou international de physique.

PHY 887

3 cr.

Propriétés optiques et de transport des solides

Objectifs: pouvoir décrire avec précision les phénomènes optiques de transport grâce à des outils perfectionnés; savoir expliquer comment ces propriétés sont mises à profit dans différents dispositifs semiconducteurs.

Contenu : équation de Boltzmann : terme de collisions, solution d'équilibre, modèle du temps de relaxation, interaction électronphonon, coefficients de transport dans les systèmes de fermions; charge d'espace et courbure de bande dans les semiconducteurs, régime de faible injection. Phénomènes optiques reliés aux électrons, aux impuretés et aux phonons; phénomènes de recombinaison radiative dans les semiconducteurs intrinsèques et extrinsèques. Dispositifs semiconducteurs : homo- et hétérojonctions, diodes et transistors biopolaires, diode Schottky, transistor à effet de champ; photodétecteurs, piles solaires, diodes luminescentes et lasers.

PHY 888 3 cr.

Transitions de phase et systèmes quantiques aux basses températures

Objectif: se familiariser avec la phénoménologie, les grands concepts et les outils mathématiques avancés liés à la compréhension des phénomènes critiques et des liquides

quantiques aux basses températures.

Contenu : paramètre d'ordre, symétrie brisée, exposants critiques, théories de champ moyen, de Ginzburg-Landau, et gaussien. Dimensions critiques, groupe de renormalisation dans l'espace des positions, décimetion, développements en 4-e et en 1/N, phénomènes de « crossover ». Percolation et fractals. Aspects statistiques de systèmes de fermions et de bosons. Liquides de Fermi, théories de Hartree-Fock et de Stoner, applications à 1³He. Hypothèse d'échelle dynamique. Groupe de renormalisation quantique. Marginalismes, supraconductivité, superfluidité, dimensionnalité réduite.

PHY 889 3 cr.

Sujets de pointe

Objectifs: connaître les domaines de la metière condensée qui se sont développés récemment et qui ne font pas encore l'objet de livres; saisir les fondements de ces domaines au point de pouvoir en faire une synthèse. Contenu: par définition, les sujets choisis seront portés à évoluer rapidement. À titre d'exemples, les sujets traités pourront être l'effet Hall quantique, la supraconductivité à haute température critique, les systèmes mésoscopiques, l'effet Aharonov-Bohm, les systèmes de Fermi fortement corrélés sur réseaux, etc.

1 cr.

PHY 891

3 cr.

Théorie des groupes (2-0-4)

Objectif: utiliser au maximum les symétries d'un hamiltonien décrivant la dynamique d'un système afin d'en simplifier la solution et d'en tirer toutés les règles de sélections qui en découlent

Contenu: groupe des rotations et ses représentations irréductibles, groupes finis, grand théorème d'orthogonalité, caractère d'une représentation, décomposition en représentations irréductibles, espace de fonctions orthogonales, projecteurs, applications aux lois macroscopiques, tenseurs de susceptibilité, relations de Onsager, classification des modes de vibration des molécules; cristaux, zone de Brillouin, fonctions de Bloch, tenseurs de susceptibilité en infrarouge et en Raman, règles de sélection selon la polarisation.

PHY 892

3 cr

Problème à « N » corps (3-0-6)

Objectif: atteindre une compréhension approfondie des systèmes à plusieurs particules quantiques en interaction avec l'aide des fonctions de corrélation et de la théorie des perturbations.

Contenu: 'deux principes d'Anderson, symétrie brisée et continuation ediabatique. Fonctions de corrélation, réponse linéaire. Fonctions de Green, opérateur d'ordre chronologique, formalisme de Matsubara, diagrammes de Faynman. Gaz de Coulomb, RPA, polarisation irréductible, écrantage, plasmons. Electrons en présence d'impuretés. Interaction électron-phonon, théorème de Migdal. Supraconductivité, paramètre d'ordre BCS, formalisme de Nambu.

PHY 896

7 cr.

48 cr.

Examen général

PHY ROR

Activités de recherche

PHY 899

25 cr.

Thèse

PSL

PSL 104

3 cr.

Physiologie animale (3-0-6)

Objectifs : connaître et comprendre les grandes activités physiologiques d'un organisme vivant.

Contenu: l'homéostasie, le métabolisme, l'ajustement et l'adaptation; la circulation; la respiration; la nutrition; l'excrétion; la contraction; la régulation: systèmes nerveux et endocrinien; la reproduction.

Concomitante : BCL 102

PSL 600

2 cr.

Biologie de la lactation (2-0-4)

Objectifs: comprendre et maîtriser les connaisances reliées aux phénomènes biologiques sous-jacents à la glande mammaire; synthétiser des connaissances en biologie cellulaire, différentiation cellulaire, physiologie, endocrinologie et biochimie; être capable d'analyser une fonction biologique en tenant compte des aspects fondamental et appliqué.

Contenu: anatomia et structures histologiques de la mamelle. Croissance de la mamelle : contrôles hormonaux du développement: influence des facteurs alimentaires et environnementaux sur la croissance mammaire. Biologie cellulaire et modification du métabolisme conduisant à la sécrétion lactée; contrôles hormonaux de la lactogénèse; synthèse biochimique des composantes du lait: facteurs influencant la composition et la production de lait. Fonction de storage de la glande mammaire; le réflexe neuro-endocrinien de la montée laiteuse; la décharge des hormones galactopoïétiques et rôle du système nerveux; comportement lors de l'allaitement; hygiène, salubrité du lait et santé de la mamelle. La récolte du lait; valeur nutritive du lait; propriétés biologiques des protéines et autres composantes peptidiques du lait; les immunoglobulines; les utilisations du lait dans le secteur agro-alimentaire. Lactation chez la femme : l'allaitement du nouveau-né; cancer du sein; les oncogènes.

Préalables : (BCM 104 ou BCM 318) et PSL 104

PSL 705

3 cr.

Biologle de la lactation (2-0-7)

Objectifs: comprendre et maîtriser les connaissances reliées aux phénomènes biologiques sous-jacents à la glande mammaire; synthétiser des connaissances en biologie cellulaire, différentiation cellulaire, physiologie, endocrinologie et biochimie; être capable d'analyser une fonction biologique en tenant compte des aspects fondamental et appliqué; via une revue de littérature, s'initier à la recherche par un apprentissage de la méthodologie sous-jacente à une recherche bibiliographique.

Contenu : anatomie et structures histologiques de la mamelle. Croissance de la mamelle : contrôles hormonaux du développement; influence des facteurs alimentaires et environnementaux sur la croissance mammaire. Biologie cellulaire et modification du métabolisme conduisant à la sécrétion lactée: contrôles hormonaux de la lactogénèse; synthèse biochimique des composantes du lait; facteurs influençant la composition et la production de lait. Fonction de storage de la glande mammaire; le réflexe neuro-endocrinien de la montée laiteuse; la décharge des hormones galactopoïétiques et rôle du système nerveux; comportement lors de l'allaitement; hygiène, salubrité du lait et santé de la mamelle. La récolte du lait; valeur nutritive du lait; propriétés biologiques des protéines et autres composantes peptidiques du lait; les immunoglobulines; les utilisations du lait dans le secteur agro-alimentaire. Lactation chez la femme : l'allaitement du nouveau-né; cancer du sein; les oncogènes. Revue de littérature et rédaction d'un travail sur un aspect particulier de la glande mammaire.

Préalables : (BCM 104 ou BCM 318) et PSL 104 ou leurs équivalents

PSV

PSV 100

2 cr.

Physiologie végétale (2-0-4)

Objectifs: connaître le fonctionnement des végétaux; comprendre et être capable d'analyser les principes biophysiques et biochimiques qui sous-tendent les principales fonctions; compaître et comprendre le contexte morphologique dans lequel celles-ci s'exercent.

Contenu: absorption, ascension et émission de l'aau; nutrition minérale; photosynthèse, respiration cellulaire et échanges gazeux; translocation des sucres et circulation de la sève élaborée.

PSV 103

Physiologie végétale - Travaux pratiques (0-3-0)

Objectifs: être apte à réaliser des expériences de base abordant les principaux chapitres de la physiologie végétale; être capable de concrétiser par des observations plusieurs concepts présentés au cours théorique; être en mesure de dégager le degré d'importance de certains facteurs du milieu sur le fonctionnement des plantes; être capable de présenter, d'analyser et de discuter les résultats des expériences.

Contenu: perméabilité cellulaire; imbibition; potentiel hydrique des tissus; nutrition minérale; toxicité et carence de bore; absorption inégale des anions et des cations; transpiration; sudation, absorption passive et active, circulation de la sève brute; photosynthèse, respiration anaérobie; réaction de Hill des chloroplastes; extraction, chromatographie et spectre d'absorption des pigments; géotropisme, phototropisme, inhibition des bourgeons exillaires et dominance apicale; auxine et abscission; germination des graines; initiation des racines par les auxines, tests de germination; translocation de la sève.

Concomitante : PSV 100

PSV 500 2 cr.

Écophysiologie végétale (2-0-4)

Objectifs: approfondir l'étude des facteurs extérieurs influençant la croissance et le développement des plantes dans leur milieu naturel; concevoir et réaliser une expérience en équipe.

Contenu: photopériodisme, rythmes circadiens et endogènes, période et phase. Cuantité de lumière. Thermopériodisme, vernalisation, types de plante, particularités, perception. Domance. Action de la température: résistance au froid, à la sécheresse, acclimatation. Pollution atmosphérique: agents, méthodes d'étude, seuils de tolérance, réactions, adaptation. Interactions: compétition et allélopathie, facteurs de production et d'efficacité. Productivité: taux de croissance, indice foliaire, densité, variations saisonnières

Préalables : ECI 110 et PSV 100

PSV 602

2 cr

Physiologie des hormones végétales (2-0-4)

Objectif: s'initier aux rôles physiologiques et aux mécanismes d'action des principales hormones végétales.

Contenu: notions de croissance, développement, régulateurs de croissance et phytohormones. Distribution, voies de synthèse, róles physiologiques et modes d'ection des principales hormones végétales: auxines, gibbérellines, cytokinines, éthylène, acide abscissique et les inhibiteurs.

Antérieure : PSV 100

PSV 504

2 cr.

2 сг.

Physiologie végétale avancée (2-0-4)

Objectif: connaître de façon approfondie certaines fonctions importantes régissant la croissance et le développement des plantes. Contenu : dynamique de la croissance végétale; photomorphogénèse; processus de la maturation des tissus et des organes; physiologie de la germination et du développement des bourgeons; physiologie de la dormance et du stress; aspects biotechnologiques de la croissance et du développement; physiologie et biologie moléculaire du métabolisme de phytoalexines et de composés allélogathiques.

Préalable : PSV 100

PSV 700

Physiologie végétale II (2-0-4)

Objectifs: approfondir les connaissances des cycles supérieurs, animer la discussion à partir de la synthèse de travaux scientifiques récents dans le domaine du métabolisme des lipides chez les végétaux.

Contenu : définition et classification des lipides. Biosynthèse des acides gras saturés et insaturés. Catabolisme des acides gras. Biosynthèse des lipides complexes : lipides neutres, phospholipides et galactolipides. Composition et rôle des lipides dans la feuille, la tige, la racine et la graine. Métabolisme des stérols libres, esters de stérols et des stérols alucosides.

PSV 702 2 cr.

Physiologie végétale III (2-0-4)

Objectifs: approfondir les métabolismes particuliers de la cellule végétale et les intégrer aux fonctions des organites cellulaires. Contenu : organites étudiés : Chloroplastes, peroxysomes, dictyosomes, réseau du réti-

culum endoplasmique et vésicules. Interactions. Ultrastructure et processus d'organisation des membranes photosynthétiques; influence de la lumière et action des striazines.

PSY

pre relation avec l'espace.

PSY 446

3 cr.

Psychologie de l'environnement Objectif: s'initier à l'interrelation individu-environnement en mettant l'accent sur sa pro-

Contenu : définition du domaine, objet d'étude, postulats, méthodologie. Environnement immédiat : espace personnel, intimité, territorialité. Environnement global : aménagement, vivre en ville, écologie, pollution. Thèmes spécifiques : milieux institutionnels,

PSV 483 3 cr.

Entraînement à l'entrevue

la maison, enfant et environnement.

Objectif : acquérir les connaissances et développer les habiletés nécessaires à la préparation, à la conduite et à l'analyse d'une entrevue de collecte de données.

Contenu: définition. Situations pertinentes. Facteurs inhibant et facteurs facilitant la cueillette de données. Stratégie, techniques verbales et non verbales, tactiques. Projet d'entrevue. Expérimentation.

PTL

PTL 304

2 cr.

2 cr.

2 cr.

Infection et immunité (2-0-4)

Objectifs: connaître les diverses zoonoses; comprendre et raisonner, à partir des principes de base en immunologie et microbiologie, l'étiologie, l'évolution, la transmission et la prévention des principales zoonoses d'origine microbienne; rédiger deux rapports démontrant que les connaissances et la compréhension acquises ont pu être appliquées avec succès à l'étude de maladies précises. Contenu ; généralités sur les zoonoses. Étiologie, évolution, transmission et prévention des principales zoonoses d'origine microbienne. L'étiologie, l'évolution et la prévention de ces diverses zoonoses sont étudiées à partir des mécanismes immunitaires impliqués et des propriétés de virulence des divers agents. La transmission et la prévention sont respectivement raisonnées à partir des notions d'écologie microbienne et d'immunologie appliquée. Émergence de nouvelles maladies infectieuses. Chaque équipe de deux étudiantes et étudiants remet deux rapports sur une maladie bactérienne et une maladie virale.

Préalables: IML 302 et MCB 508

PTL 306

Phytopathologia (2-0-4)

Objectifs : connaître et comprendre dans les détails, les différents mécanismes d'infection des organismes phytopathogènes; mettre en relation les mécanismes d'infection et les symptômes chez les végétaux; connaître les différents mécanismes de résistance des plantes et prévoir les conséquences de la mise en fonction des mécanismes de défense; intégrer les relations hôte-parasite.

Contenu: maladies biotiques et abiotiques. Diversité des agents phytopathogènes, étapes d'infection. Symptôme. Arsenal des agents phytopathogènes (toxines, enzymes hydrolytiques, hormones végétales, interférence avec les fonctions physiologiques et génétiques, etc.); les mécanismes de défense des plantes; résistance naturelle, horizontale et verticale; résistance induite locale et systémique; revue de maladies végétales d'importance économique, sociale, historique ou scientifique.

Préalable : MCB 504

PTV 702

Interactions plantes-microorganismes

Objectifs: se familiariser avec les concepts de la phytopathologie par l'étude de certains systèmes modèles; analyser les mécanismes physiques, physiologiques et moléculaires régissant l'interaction entre une plante et des microorganismes; présenter et critiquer de récents articles ou ouvrages scientifiques.

Contenu : étude moléculaire des réactions de défense de la plante. Mécanisme de virulence d'Agrobacterium tumefaciens. Les réactions d'hypersensibilité causées par Pseudomonas. Les enzymes de dépolymérisation chez Erwinia. Autres thèmes abordés par les étudiantes et par les étudiants durant le cours.

RBL

RBL 600

1 cr.

Les radiations en biochimie (2-0-0)

Objectif: aborder le mode d'action et l'utilisation des rayonnements ionisants dans une perspective métabolique et physiologique tout en acquérant des notions pratiques de radioprotection.

Contenu: radiations, radioisotopes, dosimétrie. Action chimique des radiations. Radiations, matériel génétique, réparation. Radiosensibilité cellulaire, tissulaire, organique, amplification radiobiologique. Radioprotection, notion de risque, mesures de protection. Radioisotopes, utilisation en biologie et médecine, réactions nucléaires, production.

RRL 700 2 cr.

Radiobiologie (1-3-2)

Objectif : acquérir les notions essentielles permettant de comprendre et d'utiliser des méthodes de marquage et de détection de substances radioactives incorporées à un matériel biologique.

Contenu : les particules fondamentales. Les propriétés des substances radioactives. Les interactions des radiations ionisantes avec la matière. Les principes de détection des ionisations. Notions d'énergie du rayonnement, de décroissance radioactive et de demi-vie des radioéléments. Unités de mesure. Les moyens de protection. Les principes de base de la scintillation en milieu liquide. Méthodes d'utilisation du spectromètre à scintillation et de standardisation des comptages. Préparation d'échantillons.

RED

RED 210 Rédaction technique (3-0-6)

3 cr.

Objectifs : connaître les diverses caractéristiques de style technique et administratif; être apte à rédiger, ou, selon le cas, à réviser les divers types de communication spécifiques à ce domaine de la rédaction spécialisée.

Contenu : apprentissage de la rédaction et de la présentation des principaux types de communication technique et administrative : lettres, notes, rapports techniques, directives, procédures, curriculum vitae, offres de service, procès-verbaux, imprimés administratifs, publireportages, etc. Notions de base pertinentes (outils et méthodes) à la rédaction en milieu de travail.

ROP

ROP 217

3 cr.

Introduction à la recherche opérationnelle (3-2-4)

Objectifs : s'initier à la modélisation et à la pratique en recherche opérationnelle. Développer sa capacité à modéliser et à résoudre certains problèmes classiques.

Contenu: graphes et réseaux: concepts fondamentaux, problèmes de plus court chemin, de flots dans les réseaux, d'affectation et de transport, algorithmes de marquage; problèmes du voyageur de commerce, de localisation, méthodes heuristiques; problèmes de gestion des stocks; introduction à la programmation dynamique; files d'attente.

ROP 317 3 cr.

Programmation linéaire (3-2-4)

Objectifs: connaître et maîtriser les techniques de la programmation linéaire, de l'analyse postoptimale; développer sa capacité à modéliser en termes mathématiques des situations réelles.

Contenu: représentation géométrique et théorème fondamental. Méthodes du simplexe et des pénalités, méthode révisée. Cas spécial des variables bornées. Dualité, algorithmes dual et primaldual, théorème des écarts complémentaires. Analyse postoptimale et paramétrisation. Algorithme de transport. Décomposition de Dantzio Wolfe.

ROP 630 3 cr.

Programmation en nombres entlers (3-1-5)

Objectifs: connaître et maîtriser les techniques de la programmation en nombres entiers et en particulier celles de la programmation linéaire en nombres entiers; s'initier à la pratique de ces techniques. Contenu: programmation linéaire en nom-

Contenu: programmation linéaire en nombres entiers, unimodularité, méthodes de coupes, de subdivision, d'énumération partielle, classes résiduelles. Programmation linéaire mixte. Problèmes du voyageur de commerce, du sac à dos, de localisation et d'ordonnancement. Cas nonlinéaire et cas sous critères multiples.

Préalable : ROP 317

ROP 630 3 cr.

Objectifs: connaître et maîtriser les techniques de la programmation non linéaire et s'initier aux fondements de l'optimisation convexe. S'initier à la pratique de ces techniques. Contenu: problèmes d'optimisation quadratique et convexe, conditions de Kuhn et Tucker, algorithme du simplexe dans les cas quadratique et convexe. Optimisation avec ou sans contraintes, méthodes de descente, de type gradient, de pénalités, de barrière, dualité et séparabilité. Approximation et linéarisation.

Programmation non linéaire (3-0-6)

Préalables: MAT 453 et ROP 317

ROP 637 3 cr.

Calcul variationnel et théorie du contrôle (3-0-6)

Objectif : s'initier aux techniques de solutions de problèmes d'optimisation par les méthodes variationnelles.

Contenu: problèmes d'optimisation classique: problème de la plus courte descente, problème de la traversée, problème des isopérimètres. Espaces vectoriels normés, fonctionnelles continues. Variation de Gâteaux. Condition nécessaire pour un extremum, équations d'Euler Lagrange. Multiplicateurs de Lagrange. Application au calcul des variations: politique de consommation optimale, géodésiques, principes de Hamilton, contrôle optimal d'une fusée, etc. Problèmes de SturmLiouville, méthode de RayleighRitz, principe du minimax de Courant.

Préalable : MAT 453

ROP 640 3 cr.

Modèles de la recherche opérationnelle (3-0-6)

Objectifs: faire l'apprentissage de la modélisation en recherche opérationnelle; connaître et maîtriser l'approche méthodologique menant à la construction des algorithmes; connaître et maîtriser les techniques de base en recherche opérationnelle et en programmation dynamique en particulier.

Contenu: réseaux, problème de plus court chemin et de flots avec applications, méthode PERT. Gestion des stocks sur une ou plusieurs périodes, cas déterministe et stochastique, planification et régularisation de la production. Files d'attente limitées ou non, à un ou plusieurs serveurs, en régime permanent ou non.

Préalable : STT 379

ROP 641 3 cr.

Introduction à la recherche opérationnelle (3-2-4)

Objectifs : s'initier aux méthodes de la recherche opérationnelle et connaître les modèles usuels d'aide à la décision dans les secteurs public et privé; être en mesure d'appliquer ces modèles à différents problèmes de gestion.

Contenu: programmation linéaire, fondements et dualité. Problèmes de flots dans les réseaux incluant ceux de transport. Chemin critique et ordonnancement. Programmation en nombres entiers, cas linéaire, subdivision successive et énumération partielle, problèmes de sac à dos, de localisation et d'ordonnancement.

Préalables: MAT 125 et MAT 182

ROP 731 3 cr.

Recherche opérationnelle (3-0-6)

Objectifs: tout en développant son expertise, prendre conscience de l'interraction entre différents aspects de la recherche opérationnelle de façon à en dégager une unité fondamentale par l'étude de thèmes choisis portant, par exemple, sur la programmation dynamique, la programmation stochastique, les réseaux, la gestion des stocks, la programmation continue ou discrète et les files d'attente; acquérir une expertise technique et une capacité à utiliser, implanter et développer des méthodes propres à la recherche opérationrelle.

ROP 751 3 cr.

Programmation linéaire en nombres entiers (3-0-6)

Objectif: approfondir et compléter les notions vues dans le cours ROP 530.

Contenu: méthodes de résolution de programmes linéaires en nombres entiers: algorithmes de coupes, elgorithmes d'énumération implicite, décomposition de Benders et théorie des groupes. Problèmes particuliers traités: celui du voyageur de commerce et ses extensions, celui du sac alpin, celui de la recherche d'un ensemble de recouvrement minimal et les problèmes avec coûts fixes.

ROP 761

Théorie du choix sous critères multiples (3-0-6)

Objectifs: acquérir une expérience technique et une capacité à utiliser, implanter et développer des méthodes et systèmes d'aide à la décision sous critères multiples; être capable de discemer les caractéristiques, entre autres psychologiques, sur lesquelles sont fondées ces méthodes afin de pouvoir judicieusement sélectionner une méthode selon la pertinence des hypothèses sous-jacentes propres au décideur.

Contenu : agrégation des préférences individuelles, règles classiques, théorème d'Arrow, méthodes Électre et dualité. Optimisation sous critères multiples, concepts et cône de domination, phase III du simplexe, optimisation vectorielle, par objectifs.

ROP 771

3 ст.

3 cr.

Programmation mathématique (3-0-6)

Objectif: approfondir et compléter les notions vues dans les cours ROP 317 et ROP 630. Contenu: programmation linéaire: convergence du simplexe, théorie de la dualité. Algorithmes polynomiaux (Karmarkar et autres). Programmation non linéaire: ensembles et fonctions convexes. Théorèmes d'alternatives. Conditions d'optimalité. Dualité lagrangienne. Programmation structurée: restriction et génération de colonnes. Relaxation legrangienne et lagrangien augmenté.

ROP 781 3 cr.

Sujets choisis en recherche opérationnelle (3-0-6)

Objectifs: acquérir une vision d'ensemble de la recherche opérationnelle en identifiant et comprenant les interactions entre différents aspects de celle-ci; développer une expertise dans le domaine.

Contenu: étude de thèmes choisis portant, par exemple, sur la programmation dynamique, la programmation stochastique, les réseaux, la gestion des stocks, la programmation continue ou discrète, les files d'attente.

P 787 3 cr

Sujets choisis en programmation linéaire

Sommaire : les sujets traités sont fonction des développements récents en programmation linéaire et dépendent des sujets de recherche des étudiantes et des étudiants de même que des personnes ressources au Département.

ROP 788 3 cr.

Sujets choisis en programmation non linéaire (3-0-6)

Objectif: suivre les développements les plus récents en programmation non linéaire. Contenu: sujets traités en fonction des développements récents en programmation non linéaire et en fonction des sujets de recherche des étudiantes et des étudiants de même que des personnes ressources au Département.

ROP 821

3 cr.

Sujets avancés en programmation (inéaire (3-0-6) Objectif : connaître de façon approfondie les

diverses facettes de la programmation linéaire, en particulier, les développements recents dans le domaine.

Contenu : étude de thèmes choisis en programmation linéaire comme, par exemple, les aspects avancés de la méthode du simplex, les développements récents sur les méthodes de point-intérieur, les problèmes de ré-Seaux

ROP 831

Algorithmes en programmation non linéaire (3-0-6)

Objectif : connaître de facon approfondie les aspects algorithmiques des méthodes de programmation non lineaire.

Contenu : convergence globale des algorithmes de descente; résolution des problèmes avec contraintes d'égalité : pénalité, Lagrangien augmenté; cas particulier des contraintes linéaires : contraintes actives, projection; problèmes avec contraintes d'inégalité : barrière, pénalité exponentielle; éléments d'op-timisation non différentiables.

SCI

SCI 600

3 cr.

Femmes et sciences (3-0-6)

Objectifs: comprendre la situation des femmes dans le monde scientifique; expliquer la contribution spécifique des femmes aux sciences dans une perspective historique; faire une analyse critique des sciences contemporaines et de la place faite aux femmes dans ce milieu.

Contenu : histoire des sciences. Place des femmes dans le développement des sciences contemporaines. Genèse de la question femmes et sciences. Examen des diverses critiques de la science. Approches féministes des sciences. Impacts de la présence des femmes en sciences et en génie. Édu-cation et choix de carrière. Barrières à la pratique professionnelle et à la recherche scientifique. Solutions pour favoriser les carrières scientifiques chez les femmes.

SCL 717

3 cr

Épidémiologie

Objectifs: acquérir les connaissances et habiletés nécessaires à la réalisation et à l'interprétation critique des études épidémiologiques. Pour les étudiantes et les étudiants de la maîtrise en environnement, le cours vise à leur permettre de comprendre les bases théoriques et les contraintes pratiques sousjacentes aux études épidémiologiques liées aux problèmes environnementaux.

Contenu : présentation des concepts et de la méthodologie inhérents aux études épidémiologiques. Concept de causes des maladies, mesures de fréquence, mesures d'effets et biais. Plans d'études incluant les études transversales, les études de la surveillance, les études longitudinales, les étu-

des cas-témoins et les études d'intervention. Examen des sources de données et de contrôle de qualité. Traitement statistique des mesures épidémiologiques et liens entre les deux disciplines, soit celle de la statistique et celle de l'épidémiologie.

STT 279

3 cr.

3 cr.

Probabilités et statistique I (3-2-4)

Objectifs : acquérir les notions de base en probabilités et statistique et se familiariser à l'utilisation d'un logiciel de statistique à l'aide de problèmes pratiques.

Contenu : approche intuitive des probabilités et statistique descriptive. Notions de base en probabilité et variables aléatoires discrètes (théorie des ensembles, propriétés des probabilités, distributions hypergéométriques, Bernoulli et binomiale). Variables aléatoires continues (densités uniforme, gamma et normale). Théorème de la limite centrale. Estimation ponctuelle (méthode des moments et propriétés de base des estimateurs), Tests d'hypothèses (sur les proportions, moyennes et variances). Régression linéaire et linéari-

Concomitante: MAT 228 ou MAT 233

STT 379

Probabilités et statistique II (3-1-5)

Objectifs: comprendre les concepts fondamentaux de la théorie des probabilités et apprendre à les utiliser pour en déduire les notions principales en statistique.

Contenu : espace de probabilité (tribu, probabilité conditionnelle, événements indépendants, théorème de Bayes). Lois classiques, Lois multivariées (coefficient de corrélation, distributions conditionnelles, loi normale bivariée). Lois du tStudent et FFisher, transformations de variables aléatoires. Files d'attentes. Fonctions de vecteur aléatoire. Estimation ponctuelle (propriétés des estimateurs, méthode du maximum de vraisemblance). Intervalles de confiance classiques. Inégalités et résultats asymptotiques. Tests d'hypothèses (puissance, région critique, test du maximum de vraisemblance, test du khicarré)

Préalable : STT 279

STT 418 3 cr.

Statistique appliquée (3-2-4)

Objectif : acquérir les notions de probabilité et de statistique indispensables à l'analyse

Contenu : éléments de statistique descriptive. Notions fondamentales de probabilité. Notions d'échantillonnage. Estimation ponctuelle. Généralités sur les tests d'hypothèses. Tests usuels. Ajustement de données par des lois. Modèles de régression et tests associés. Étude de cas tirés des milieux des affaires et de l'économie.

Préalable : MAT 125

STT 479

3 cr.

Probabilités et statistique III (3-1-5)

Obiectifs : connaître la technique de conditionnement en calcul des probabilités et être en mesure de l'appliquer à différents problèmes apparaissant en statistique, en physique,

en biologie, en actuariat, en économétrie, en théorie de l'information et en recherche opérationnelle.

Contenu : distributions et espérances conditionnelles. Fonctions génératrices et appli-cations. Processus de branchement. Chaînes de Markov et théorèmes de convergence. Marches aléatoires. Processus de Poisson. Chaînes de naissance et de mort.

Préalable : STT 279

STT 520 3 cr.

Théorie de la décision (3-0-6)

Objectifs : connaître quelques sujets de la théorie de la décision classique et bayésienne; savoir utiliser les dites connaissances à la résolution de problèmes complexes.

Contenu : théorie de la décision. Rèales de décision, fonction de perte, fonction de risque, lois a priori et a posteriori. Risque de Bayes. Modèles et principes statistiques. Critères de décision. Information, exhaustivité. Résumé exhaustif et critère de factorisation, familles exponentielles de lois. Théorèmes de Rao-Blackwell et de Darmois. Estimation ponctuelle et par intervalle. Obtention d'estimateurs. Estimateurs sans biais variance minimale, inégalité de Rao-Cramer, statistique complète. Comportement asymptotique des estimateurs. Estimation bayésienne. Estimation dans le cas d'un paramètre vectoriel. Tests d'hypothèses. Lemme de Neyman-Pearson. Tests uniformément plus puissants. Tests localement plus puissants. Tests bayésiens.

Préalable : STT 379

STT 521

Théorie de l'échantillonnage (3-0-6)

3 cr.

Objectif: s'initier aux différentes techniques d'échantillonnage et de sondages.

Contenu : échantillonnage aléatoire simple, estimation des paramètres. Échantillonnage pour proportions. Estimation de la taille échantillonnale. Échantillonnage stratifié. Estimateurs quotients, estimateurs de régression. Échantillonnage systématique. Source d'erreur dans les sondages.

Préalable : STT 379

STT 522 3 cr.

Séries chronologiques (3-0-6)

Objectif : s'initier aux modèles de base utilisés lors de l'étude de séries chronologiques. Contenu: stationnarité. Fonction d'autocorrélation. Modèle stationnaire. Processus autorégressifs, à moyenne mobile, mixtes, modèles non stationnaires. Identification et estimation, prévision. Séries saisonnières.

Préalable : STT 379

STT 563

Modèles statistiques linéaires (3-0-6)

Objectifs : se familiariser avec les principaux modèles linéaires d'utilité courante et être capable de choisir le modèle approprié à une situation donnée tout en prenant conscience des limites des modèles utilisés.

Contenu: modèle linéaire général, régression linéaire simple et multiple, analyse de la variance à un facteur, contraste, analyse de la variance à deux facteurs sans et avec interactions, analyse de la covariance. Dans chacun des cas, les problèmes d'estimation et de tests d'hypothèses seront discutés.

Préalable : STT 379

CTT EGA

2 --

Modèles statistiques multidimensionnels (3-0-6)

Objectif: s'initier aux principaux modèles sta-

Contenu : analyse en composantes principales. Analyse canonique. Analyse discriminante et classification. Analyse des correspondances

Préalable : STT 379

STT 619

3 cı

Introduction à la consultation statistique (3-0-6)

Objectifs: mettre les étudiantes et les étudiants face à des problèmes de statistique appliquée, leur inculquer l'esprit et la méthodologie nécessaires à la résolution de ces problèmes, puis les guider dans leurs analyses de données.

Contenu: présentations par des experts en consultation et/ou méthodologie, provenant des secteurs privé ou gouvernementaux, qui apportent des projets émenant de leur milieu de travail. La partie magistrale est complétée par des discussions de groupe et des travaux pratiques coordonnés par une professeure ou un professeure ou un professeure ou mapont du département. Pour son évaluation, l'étudiante ou l'étudiant devra faire une analyse statistique et remettre un rapport écrit.

Préalable: avoir obtenu 54 crédits du baccalauréat en mathématiques, concentration statistique.

STT 629 3 cr.

Processus stochestiques (3-0-6)

Objectifs: comprendre les principaux modèles de processus stochastiques et être en mesure de les utiliser pour en construire de plus complexes.

Contenu : martingales. Processus stationnaires. Mouvement brownien et autres processus gaussiens. Un ou des sujets parmi : processus de Markov; diffusions; théorie du potentiel; théorie du renouvellement; files d'attente.

Préalable : STT 379

STT 639 3 cr.

Mesure et probabilité (3-0-6)

Objectif: approfondir sa compréhension des méthodes de la théorie des probabilités, en particulier les pincipales constructions et les techniques de démonstration des résultats classiques de la théorie.

Contenu : fondements et théorème d'extension de Kolmogorov. Divers types de convergence et leurs relations. Lemme de Borel-Cantelli et démonstrations de la loi fone des grands nombres et de la loi du logarithme itéré. Construction des espérances conditionnelles à l'aide du théorème de RadonNykodym et application. Fonctions caractéristiques et théorème de la limite centrale.

STT 679 3 6

Méthodes non paramétriques (3-0-6)

Objectifs : se familiariser avec les principaux tests issus des méthodes non paramétriques et pouvoir les appliquer à la résolution de problèmes concrets.

Contenu: statistiques d'ordre. Statistiques linéaires de rangs. Test non paramétriques de tendance centrale, de dispersion, d'ana-

lyse de la variance, d'indépendance. Tests de permutation. Tests du type Kolmogorov-Smirnov. Normalité asymptotique des statistiques linéaires simples de rangs.

Préalable : STT 379

STT 701 3 c

Probabilités (3-0-6)

Objectif : comprendre et être en mesure d'utiliser les techniques de calcul d'espérances conditionnelles et celles liées à la manipulation de la convergence étroite en théorie des probabilités.

Contenu: révision de la théorie des probabilités. Espérances conditionnelles. Martingales à temps discret et théorème de convergence de Doob. Convergence étroite, tension et théorème de la limite centrale.

STT 702

Modèles de probabilités appliquées (3-0-6)

Objectif : connaître la convergence étroite sur les espaces de fonctions et être en mesure de l'utiliser dans la résolution de problèmes complexes

Contenu: martingales à temps continu. Topologie de la convergence étroite des probabilités sur l'espace des trajectoires continues, muni de la topologie de la convergence uniforme sur les compacts. Topologie de la convergence étroite des probabilités sur l'espace des trajectoires câdlàg, muni de la topologie de Skorohod. Applications à la description et à l'analyse des principaux modèles mathématiques décrivant l'évolution de systèmes de particules en physique statistique, en génétique mathématique, en statistique dynamique et en microéconomique.

STT 707 3 cr.

Analyse des données (3-0-6)

Objectif: maîtriser un certain nombre de sujets dont les applications dans divers domaines permettent de modéliser des situations complexes.

Contenu: analyse en composantes principales. Analyse des corrélations canoniques et régression multidimensionnelle. Analyse des correspondances. Discrimination. Classification. Analyse factorielle d'opérateurs.

STT 708

Sujets choisis en probabilités (3-0-6)

Contenu: sujets traités en fonction des développements récents en probabilité et en fonction des sujets de recherche des étudiantes et des étudiants de même que des personnes ressources au Dénartement.

STT 711 3 cr.

Statistique appliquée (3-0-6)

Objectif: appliquer des outils statistiques à la résolution de problèmes d'envergure dans divers domaines.

Contenu: modèles appliqués de régression linéaire et non linéaire. Modèles appliqués d'analyse de la variance et de la covariance. Plans d'expériences optimaux. Analyse et interprétation de données statistiques. Applications à la résolution de problèmes en informatique, en biométrie, en économètrie ou en génie.

STT 712

3 ...

Statistique non paramétrique (3-0-8)

Objectif: acquérir les notions fondamentales que sont l'estimation et les tests d'hypothèses dans le cadre non paramétrique.

Contenu: tests basés sur les rangs. Propriétés finies. Propriétés asymptotiques sous l'hypothèse nulle. Propriétés ssymptotiques sous alternatives contiguês. Estimateurs de HodgesLehmann. Propriétés finies et asymptotiques.

STT 718 3 c

Sulets choisis en statistique (3-0-6)

Contenu: sujets traités en fonction des développements récents en statistique et en fonction des sujets de recherche des étudiantes et des étudiants de même que des personnes ressources au Département.

STT 721 3 cr.

Tests d'hypothèses (3-0-6)

Objectifs: approfondir ses connaissances sur les tests d'hypothèses et faire le lien avec la théorie de la décision

Contenu: rappels sur la théorie de l'estimation. Les tests d'hypothèses et le problème général de la théorie de la décision. Tests uniformément plus puissents. Tests non biaisés et applications. Invariance. Hypothèses linéaires. Principe du minimax.

STT 722 3 cr.

Théorie de la décision (3-0-6)

Objectif : approfondir ses connaissances en statistique en utilisant l'approche de la théone de la décision.

Contenu concepts de base d'un problème de décision statistique. Théorie de l'utilité. Notions d'admissibilité et de complétude. Théorie de l'hyperplan séparateur et théorie du minimax. Classes essentiellement complètes de règles de décisions et statistiques exhaustives. Règles de décision invariantes et problèmes de décisions multiples.

STT 723 3 cr.

Séries chronologiques (3-0-6)

Objectifs: acquérir les notions et les outils de base propres à l'étude des séries chronologiques et faire le lien avec l'étude des processus stochastiques.

Contenu: processus stochastiques (généralités). Description et caractéristiques des séries chronologiques. Transformées de Fourier. Analyse statistique des séries chronologiques. Analyse spectrale des processus linéaires. L'issage des estimateurs spectraux.

STT 761 3 cr.

Statistique mathématique (3-0-6)

Objectif: compléter et approfondir ses connaissances en statistiques mathématiques. Contenu: exhaustivité et complétude, théorème de factorisation de Neyman-Fisher, statistiques minimalement exhaustives, théorie de l'estimation ponctuelle, estimateurs sans biais à variance minimale, efficacité des estimateurs, borne de Cramer-Rao, estimateurs asymptotiquement efficaces, estimateurs du maximum de vraisemblance, estimateurs bayésiens, estimateurs minimax, estimateurs de Bayes généralisés, invariance, estimateurs invariants, théorème de Hunt-Stein, admissi-

4 cr

1 cr.

2 cr.

1 cr.

bilité, tests d'hypothèse statistiques, intervalles de confiance et intervalles de tolérance.

TSB

TSB 303

Méthodes analytiques en biologie (2-0-4) Objectifs : connaître les méthodes analyti-

ques de base; comprendre et être capable d'analyser un protocole expérimental. Contenu : rappel de chimie des solutions; notions de molarité, de normalité, de pourcentage, de pH et de tampon; spectrophotométrie et fluorimétrie; chromatographie en couche mince, tamisage moléculaire, échange d'ions, affinité, interactions hydrophobes, application sur HPLC; électrophorèse; centrifugation et ultracentrifugation, marquage avec des radio-isotopes et marquages alternatifs, techniques immunologiques; exemples en biologie basés sur des articles de la littéra-

tes expérimentaux.

2 cr.

Culture de cellules et tissus -Travaux pratiques (1-3-2)

ture scientifique; établissement de protoco-

Objectifs: connaître, comprendre et être capable d'utitiser les techniques de base reliées à la culture des cellules animales et végétales in vitro.

Contenu: cellules animales: organisation d'un laboratoire de culture cellulaire; principes et méthodes de stérilisation; milieux de culture: rôle et composition; culture primaire, culture des cellules adhérentes et en suspension, culture organotypique; établissement de lignées cellulaires; clonage cellulaire; conservation des cellules; décompte cellulaire; ensemencement, dispersion et propagation des cellules. Cellules végétales : avantages et désavantages de la culture; notions sur la structure des tissus et de la physiologie; conditions de culture en milieux solide et liquide; culture de méristèmes caulinaires; organogénèse et notions de différenciation cellulaire; production de cals et applications; culture de tissus et de protoplastes; culture d'embryons zygotiques et formation d'embryons somatiques; évolution du tissu et de la cellule et phénomènes de dégénération. Cette activité pédagogique est réservée exclusivement aux étudiantes et aux étudiants de la concentration biotechnologie.

Préalables : BCL 506 et GNT 506

TSB 701 2 c

La culture de cellules et de tissus (1-4-1)

Objectif: s'initier aux principes et aux techniques de base reliées à l'utilisation des cellules animales et végétales *in vitro*.

Contenu: cellules animales: asepsie et contrôle de la contamination. Quantification des cellules. Méthodes de dispersion des cellules. La culture de cellules en feuillet (monocouche) et en suspension. La croissance celluleire. La culture primaire. Isolement de colonies de celluleis. Propagation et maintien d'une lignée cellulaire. Congélation et décongélation de cellules. Idantification des types cellulaires. Cellules végétales: culture de méristèmes, multiplication végétative. Organogénèse: caulogénèse et mizogénèse, rè gulation hormonale. Exigences différentes pour les étudiantes et les étudiants de 2º et 3º cycles.

VIR

VIR 500 2 cr.

Virologie (2-0-4)

Objectifs: connaître et expliquer les termes, définitions, fairs, méthodes, classifications, principes et lois propres à la virologie moléculaire; appliquer les dits connaissances et principes à des cas pratiques simples et nouveaux dans le but d'expliquer, condure, interprêter et extrapoler à partir de ces demiers. Contenu: les virus: structure et classification, méthodes de titration et de purification. Étude détaillée du cycle viral: adsorption, péhoritation, décapsidation, réplication et expression génétique des génomes viraux, maturation et relargage. Phénomènes d'interférence: interféron. Réponse réductive dans le cas des virus des animaux: transformation et cancer.

Préalable : GNT 302 ou GNT 304

VIR 523 2 cr.

Virologie - Travaux pratiques (0-6-0)

Objectifs: constituer et tirer deux stocks de bactériophages lambda et M13; induire le bactériophage lambda à partir de bactéries lysogènes; isoler et caractériser les ADN des bactériophages et les caractériser par des enzymes de restriction; visualiser, par des techniques de coloration indirecte, les virions au microscope électronique; présenter les résultats expérimentaux sous forme d'un rapport écrit selon les normes reconnues en virologie.

Contenu : à partir d'un échantillon de bactéries lysogènes pour le bactériopphage lambda et d'une petite quantité de bactériophage M13, chaque équipe de deux étudiantes et étudiants doit réussir à induire le phage lambda, à obtenir, pour chaque phage, un stock initial, à l'amplifier et à le titrer. Finalement, chaque équipe doit caractériser enzymatiguement les ADN des phages et observer les virions au microscope électronique. Pour chacune des techniques préalablement mentionnées, c'est l'étudiante ou l'étudiant qui reste l'artisan principal de leur mise au point et de la préparation du matériel qu'elles nécessitent, ainsi que de la planification générale du travail. Ce dernier fait l'objet d'un rannort écrit.

Concomitante : VIR 500

VIR 600 1 cr.

Virologie appliquée (1-0-2)

Objectif : comprendre les principes des techniques à utiliser dans un laboratoire de virologie moléculaire afin de pouvoir préparer et modifier des protocoles expérimentaux et d'interpréter correctement les résultats obtenus.

Contenu: culture de cellules eucaryotes; adaptation in vitro, lignées continues, clonage. Production de virus: multiplicité d'infection, titrage, permissivité. Ultracentrilugation: punfication des virus et acides nucléiques. Électrophorèse: protéines et acides nucléiques, gels de polyacrylamide et d'agarose. Transfert sur membrane: « Southern, Northern et Western blots ». Clonage d'ADN et l'ARN: vecteurs, hôtes, enzymes impliquées. Applications de ces différentes techniques.

ZOO

ZOO 104

Formes et fonctions animales (4-0-8)

Objectifs: être en mesure d'identifier et décire les principales composantes des grands systèmes morphologiques ainsi que d'établir des relations entre la morphologie des structures et leur utilisation par les animaux pour chacun des systèmes; comprendre les liens qui existent entre la morphologie et le mode de vie ou l'écologie des animaux.

Contenu: les composantes majeures des systèmes morphologiques, dont les systèmes de soutien, de transmission nerveuse, d'alimentation, de respiration, d'excrétion, de mouvement, et de reproduction seront décrites et présentées par des cours magistraux et à l'aide d'exemples. L'emphase sera mise sur le fonctionnement des systèmes et sur les adaptations propres aux différents groupes d'animaux. On expliquera comment les structures impliquées dans ces systèmes ont été modifiées par la sélection naturelle pour permettre aux animaux de s'adapter aux divers climats, milieux et stratégies alimentaires.

ZOO 105

Formes et fonctions animales - Travaux pratiques (0-3-0)

Objectifs : être en mesure d'identifier, de décrire et de comparer la morphologie externe et interne des espèces représentant les grands groupes d'invertébrés et de vertébrés. contenu : l'étudiante ou l'étudiant utilisera des spécimens de divers groupes taxonomiques d'invertébrés et de vertébrés pour lui permettre de se familiariser avec leurs structures et leur morphologie externe. Ensuite, il disséguera des spécimens pour mettre en évidence les structures maieures des systèmes de soutien, de respiration, de circulation, de digestion et de reproduction. Il devra faire des représentations graphiques et des mesures pour lui permettre de comprendre les modifications et les adaptations subies par ces structures dans l'évolution des grands groupes d'animaux.

Concomitante: ZOO 104

ZOO 302

Ichtyologie (2-0-4)

Objectif: comprendre les notions de base concernant la vie des poissons et leur importance pour l'homme.

Contenu : taxonomie, évolution, morphologie, reproduction, physiologie, comportement, écologie, pêcheries et aquaculture. Aspects importants de la biologie des poissons et insistance sur les applications en écologie, aquaculture et pêcheries.

Préalable : ZOO 104

ZOO 303

Ichtyologie - Travaux pratiques (0-3-0)

Objectifs : se familiariser avec les techniques d'étude de population de poissons et avoir l'opportunité de travailler avec des poissons singette.

Contenu: taxonomie, morphologie, âge, étude d'une population de poissons, développement des œufs, respiration, effets thermiques, sélection de la température, comportement social. Une partie du cours porte sur une série d'expériences réalisées par des équipes d'étudiantes ou d'étudiants. Visite d'une pisciculture.

ZOO 500

2 cr.

Taxonomie animale (2-0-4)

Objectifs: connaître et comprendre les buts de l'utilisation de la systématique et identifier les principaux groupes taxonomiques chez les vertébrés.

Contenu: taxonomie et types de systématique; définition d'espèce; spéciation; taxonomie et conservation; préparation et utilisation d'une clef taxonomique. Examen de spècimens. Étude des caractéristiques qui permettent l'identification des familles. Techniques d'identification des poils, des plumes, des os et des dents.

Préalables: ECL 110 et ZOO 104

CALENDRIER 1999-2000 - FACULTÉ DES SCIENCES			
	Trimestre automne 1999	Trimestre hiver 2000	Trimestre été 2000
Journée d'accueil	avant-midi du 26 août pour les S-1	N/A	N/A
Début des activités pédagogiques	jeudi 26 août	mercredi 5 janvier	lundi 1er mai
Rentrée au Centre sportif	mardi 31 août mercredi 1er septembre jaudi 2 septembre	mercredi 5 janvier : en après-midi jeudi 6 janvier	N/A
Début des stages coopératifs	lundi 30 août	lundi 3 janvier	lundi 1er mai
Date limite du choix ou de modification des activités pédagogiques	mercredi 15 septembre	vendredi 21 janvier	dimanche 21 mai
Date limite de présentation d'une demande d'admission (1er cycle temps complet)	lundi 1er novembre pour le trimestre d'hiver	mercredi 1er mars pour le trimestre d'automne	NA
Relâche des activités pédagogiques	du lundi 25 octobre au vendredi 29 octobre	du lundi 28 février au vendredi 3 mars	du lundi 26 juin au vendredi 30 juin
Date limite d'abandon des activités pédagogiques	lundi 15 novembre	mercredi 15 mars	samedi 8 juillet
Fin des stages coopératifs	vendredi 10 décembre	vendredi 14 avril	vendredi 11 août
Fin des activités pédagogiques	vendredi 17 décembre	vendredi 28 avril	vendredi 18 août
Activités étudiantes	jeudi 2 septembre : en après-midi	mercredi 26 janvier de 8 h 30 à 16 h 30	N/A
Congés universitaires	lundi 6 septembre (Fête du travail) lundi 11 octobre (Action de grêces)	vendredi 21 avril (Vendredi Saint) lundi 24 avril (Lundi de Pâques)	lundi 22 mai (Fête de Dollard) vendredi 23 juin - report du 24 juin (Fête nationale du Québec) vendredi 30 juin - report du 1er juillet (Fête du Canada)
Nombre de jours d'activités pédagogiques	74,5 jours	75 jours	73 jours